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Institute of Physics, PO Box 57, 11001 Belgrade, Yugoslavia.

Abstract

This paper examines the formal structure of the Boltzmann equation (BE) theory of charged
particle transport in neutral gases. The initial value problem of the BE is studied by using
perturbation theory generalised to non-Hermitian operators. The method developed by Résibois
was generalised in order to be applied for the derivation of the transport coefficients of swarms
of charged particles in gases. We reveal which intrinsic properties of the operators occurring
in the kinetic equation are sufficient for the generalised diffusion equation (GDE) and the
density gradient expansion to be valid. Explicit expressions for transport coefficients from the
(asymmetric) eigenvalue problem are also deduced. We demonstrate the equivalence between
these microscopic expressions and the hierarchy of kinetic equations. The establishment of the
hydrodynamic regime is further analysed by using the time-dependent perturbation theory. We
prove that for times tÀ τ0 (τ0 is the relaxation time), the one-particle distribution function
of swarm particles can be transformed into hydrodynamic form. Introducing time-dependent
transport coefficients ω̂

(p)
∗ (~q, t), which can be related to various Fourier components of the

initial distribution function, we also show that for the long-time limit all ω̂
(p)
∗ (~q, t) become time

and ~q independent in the same characteristic time and achieve their hydrodynamic values.

1. Introduction

One of the most important contributions of Résibois (1970) to nonequilibrium
statistical mechanics is his analysis of linearised hydrodynamic modes. He
formulated the problem of linear hydrodynamic modes from a microscopic point
of view. The concept of hydrodynamic modes plays an important role in
many problems in kinetic theory where long-wavelength, low-frequency behaviour
dominates, such as in the critical behaviour of transport coefficients (Résibois and
Prigogine 1960) or the slow power-law decay of correlation functions (Résibois
and Leaf 1960). Résibois treated the eigenvalue problem associated with the
linear generalised BE by the degenerate perturbation method in powers of the
uniformity parameter q. As a result, the hydrodynamic frequencies appear as
five eigenvalues calculated up to the order q2 which tend to zero when q → 0.
In this procedure, the usual expressions for the transport coefficients in neutral
gases come out as q2-coefficients of the eigenvalues. This analysis clarifies the
microscopic interpretation of transport coefficients with respect to the traditional
approach, which was based on the Chapman–Enskog method for dilute gases. On
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the other hand, the eigenfunctions associated with the hydrodynamic frequencies
furnish a microscopic expression for the above-mentioned hydrodynamic modes.

In this paper we present both the stationary and time-dependent perturbation
treatment of the BE. The stationary treatment is a generalisation of the technique
developed by Résibois to the transport of charged particles swarms in neutral
gases. The basic idea is to construct the hydrodynamic form of one-particle
distribution function from the more basic principles rather than impose it. If
the time-dependent perturbation method is applied it is possible to obtain a
deeper understanding of the relationship between the initial conditions and the
time dependence of the transport coefficients and of the one-particle distribution
function that is built into the transport theory. In other words, one may obtain
fundamental knowledge on the limitations of the applicability of the hydrodynamic
theory of swarms.

The issue of the definition of transport coefficients, their comparisons and the
adequacy of theoretical calculations arose as the accuracy of experiments obtained
under different conditions improved and also as Monte Carlo simulations were
used more extensively with more complete scattering models. Nevertheless, the
assumptions of the hydrodynamic expansion and the GDE were always taken as
the basic assumptions. In particular, it was always assumed that density gradient
expansion is applicable under the assumption of small gradients, but the criterion
on just how small the gradients should be was not established clearly.

The starting point for this work is the study by Kumar (1981), where the
connection between the hydrodynamic behaviour and the spectral properties of
the operators occurring in the BE was established. Basically, he applied a
time-dependent perturbation technique to a hierarchy of equations for spatial
moments of the one-particle distribution function. He was able to show that,
in the hydrodynamic limit, both spatial moments and time-dependent transport
coefficients should approach time-independent limits. Standish (1987) has developed
Kumar’s ideas further by applying a projection operator method to the Fourier
transform of the BE which resulted in a simpler procedure, but the final results
were essentially the same. Kondo (1987) has also applied the projection operator
method in the study of the initial relaxation processes. In order to derive the
evolution equation which describes the development of the number density at all
times, Kondo assumed that the initial distribution separates the spatio-temporal
and the velocity part of the one-particle distribution function. Thus the resulting
GDE which was developed from the BE originates from a very special form of
the initial conditions.

Keeping in mind the importance of the application of the hydrodynamic theory
and the need to extend the swarm analysis to situations where either large
gradients may occur or some form of non-equilibrium (spatial or temporal or
both) may develop, we have attempted to develop a theory that would not rely
in any way on the assumptions of the GDE and density gradient expansion and
which would allow us to correlate the temporal development of the swarms with
the very general initial conditions.

These issues often arise in the application of the transport theory to modeling
of rf plasmas used in the processing of very large scale integrated electronic
circuits (Nakano et al . 1994). Large gradients occur in the proximity of the
electrodes of glow discharges (Boeuf and Marode 1982) at all pressures, but
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the non-hydrodynamic behaviour is particularly observable at low pressures in
Townsend and obstructed glow discharges (Petrović and Phelps 1997).

The paper is organised as follows. In the remainder of the introduction we
outline the basic definitions of the kinetic theory of charged particle swarms. In
Section 2 we recall briefly the initial value problem of the BE, together with a few
useful properties of the operators involved in this equation. In Section 3 we develop
the time-independent version of the theory, namely we construct asymptotic
(long-time) solutions to the BE and discuss their analogy with solutions obtained
by different methods. Section 4 is devoted to the time-dependent part of the
theory. Finally, after the conclusions in Section 5, more detailed mathematical
developments can be found in the Appendices.

(1a) Outline of the Relevant Kinetic Theory

For the purpose of this paper a swarm is defined as an ensemble of independent
charged particles moving in a neutral background gas. The motion of the swarm
particles is determined by the forces exerted by the external electric field ~E and
collisions with gas molecules. Throughout this paper the electric field is assumed
to be uniform in space and independent of time. We assume that the swarm
particles are described by a one-particle distribution function, denoted here as
f(~r,~v, t).

First, we can reproduce the arguments for neglecting the nonlinearity. To
simplify, we assume that, at t = 0, the neutral gas molecules are distributed
uniformly in space and their distribution function, simply denoted by f0, is then
f0(~r,~v, 0) = f (0)(~v). If we suppose that the swarm density n(~r, t) is very small
compared with the gas density n0 then:

(a) The probability of collision between two swarm particles is extremely small
compared with the probability of their collision with gas molecules (by a
factor n/n0).

(b) Similarly, the neutral gas distribution function is only slightly perturbed
(again by a factor n/n0) from its spatially uniform form by the very rare
collisions of swarm particles with the neutral gas.

Hence, the relation f0(~r,~v, t) = f (0)(~v) + o(n/n0) remains approximately valid at
all times.

The Boltzmann equation for swarms in free space has the form (Kumar et al .
1980): [

∂

∂t
+ ~v · ∂

∂~r
+ ~a · ∂

∂~v

]
f(~r,~v, t) = J(f) , (1)

where ~a = e ~E/m is the acceleration of the particle with charge e and mass m in
the electric field ~E. The operator J is the collision integral which includes the
elastic and inelastic particle conserving processes and the effects of attachment
and ionisation, i.e. annihilation and creation of charged particles (Kumar et al .
1980; Kumar 1984; Wang-Chang et al . 1964). The collision operator J maps the
function f onto another function, say f̃ , f → f̃ = J(f) and depends functionally
on the neutral distribution and scattering cross sections. It is a linear operator
which acts on f only through its ~v dependence. The operator J is local in space
and in time.
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Let us briefly review some results of the standard BE theory of charged particle
transport which will be useful hereafter.

The connection between the swarm experiments (Huxley and Crompton 1974)
and the theory proceeds by first making an assumption about the time development
of the number density n(~r, t) (Kumar et al . 1980; Kumar 1984):[

∂

∂t
−
∞∑
p=0

ω̂(p) ¯
(
− ∂

∂~r

)p]
n(~r, t) = 0. (2)

This equation is known as the generalised diffusion equation (GDE). The constants
ω̂(p) are tensorial transport coefficients of order p, and ¯ indicates a p-fold scalar
product.

In the context of static fields (Kumar et al . 1980), the term ‘hydrodynamic
regime’ (HDR) is usually employed to describe the situation where the system
has evolved to a state independent of the initial state of the system and the
space–time dependence of one-particle distribution function f(~r,~v, t) is entirely
carried by the number density n(~r, t). A sufficient functional relationship between
f(~r,~v, t) and n(~r, t) in the HDR is the density gradient expansion (Kumar et al .
1980)

f(~r,~v, t) =
∞∑
p=0

f̂ (p)(~v)¯
(
− ∂

∂~r

)p
n(~r, t). (3)

The coefficients f̂ (p)(~v) are velocity-dependent tensors of rank p. The density
gradient expansion (3) is a priori assumed for the one-particle distribution function
f(~r,~v, t) in the HDR. This form of functional relationship makes it possible to
derive transport coefficients which are independent of time. The hydrodynamic
regime does not pre-suppose small relative gradients n−1(∂/∂~r)n, yet equations
(2) and (3) can be expected to hold only when the density gradients are small.

The connection between kinetic theory and transport coefficients is established
via the BE (1). Substitution of the expansion (3) into equation (1) and making
use of the GDE (2) leads to the following hierarchy of kinetic equations (Kumar
et al . 1980) (

~a · ∂
∂~v
− J

)
f̂ (0) = −ω̂(0)f̂ (0), (4)

(
~a · ∂

∂~v
− J

)
f̂ (p) = ~vf̂ (p−1) −

p∑
j=0

ω̂(j)f̂ (p−j), p ≥ 1. (5)

Integration of equations (4) and (5) with respect to velocity ~v gives

ω̂(0) =
∫
d3~vJRf̂ (0), (6)
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ω̂(p) =
∫
d3~v~vf̂ (p−1) +

∫
d3~vJRf̂ (p), p ≥ 1. (7)

The tensor functions f̂ (p) have the following normalisation:∫
d3~vf̂ (0) = 1,

∫
d3~vf̂ (p) = 0, p ≥ 1. (8)

Condition (8) is needed to make f̂ (p) unique. The operator JR is the part of
the collision operator J responsible for reactions.

Our aim is to reveal which intrinsic properties of the operators occurring in
the kinetic equation (1) are sufficient for the validity of the GDE (2) and the
density gradient expansion (3). We approached this problem by developing a
formal but very general frame that applies in principle to the most general case
of charged particle transport, using the formal language and the tools developed
in quantum many-body theory.

2. Initial Value Problem

We first write the BE (1) in Fourier space. Applying the Fourier transform
to equation (1) one obtains

∂

∂t
Φ(~q,~v, t) = LΦ(~q,~v, t), (9)

where Φ(~q,~v, t) is the spatial Fourier transform of the distribution function

Φ(~q,~v, t) =
∫
d3~r e−i~q·~rf(~r,~v, t). (10)

In equation (9) the operator L is

L =M+ P, (11)

with

M = −~a · ∂
∂~v

+ J, (12)

P = −i~q · ~v. (13)

For the sake of compact notation, we introduce an abstract Hilbert space H to
represent any function ψ of velocity ~v. In other words, we consider ψ(~v) as the
velocity-space representation of the vector |ψ〉 ∈ H (Messiah 1974):

ψ(~v) = 〈~v|ψ〉. (14)
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In Hilbert space H, the scalar (inner) product between two arbitrary vectors |ϕ〉
and |ψ〉 is defined as

〈ϕ|ψ〉 =
∫
d3~v

1
f (0)(~v)

ϕ∗(~v)ψ(~v). (15)

Otherwise, we are free to choose the f (0)(~v) arbitrarily. The norm induced by
the scalar product 〈·|·〉 is denoted by || · ||. According to equation (15) we have

Î =
∫
d3~v

1
f (0)(~v)

|~v〉〈~v|, (16)

〈~v|~v ′〉 = f (0)(~v
′
)δ(~v − ~v ′) , (17)

where Î is the unit operator and δ is the delta function.
Likewise, we have established a formal correspondence between the operators

L, M and P, and the linear operators on Hilbert space H:

M→ Ĥ0, P → Ĥ ′, L =M+ P → Ĥ = Ĥ0 + Ĥ ′. (18)

For instance, acting convective operator Ĥ ′ = −i~q · ~̂v on vector |ψ〉 ∈ H,
according to equation (16), is defined as

Ĥ ′|ψ〉 =
∫
d3~v

1
f (0)(~v)

ψ(~v)(−i~q · ~̂v)|~v〉, |ψ〉 ∈ H, (19)

where ~̂v is a vector operator (Messiah 1974). A vector operator ~̂v is defined by
its components v̂1, v̂2 and v̂3 along three orthogonal axes, where v̂1, v̂2, v̂3 are
operators in the ordinary sense of the term. If we use equation (17), from (19)
we obtain that the velocity-space representation of the vector Ĥ ′|ψ〉 is

φ(~v) = 〈~v|Ĥ ′|ψ〉 = −i~q · ~vψ(~v). (20)

Consider an abstract Cauchy problem (or initial value problem)

∂

∂t
|Φ(~q, t)〉 = Ĥ|Φ(~q, t)〉, |Φ(~q, 0)〉 = |ΦI(~q)〉. (21)

The formal solution of (21) is

|Φ(~q, t)〉 = etĤ |ΦI(~q)〉, (22)

where the exponential of an operator Ĥ is defined by the expansion

etĤ =
∞∑
l=0

1
l!

(tĤ)l. (23)
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Here, however, Ĥ is not a Hermitian operator. Indeed, it is obvious that the
convective operator Ĥ ′ is an anti-Hermitian

〈ϕ|Ĥ ′|ψ〉 = −〈ψ|Ĥ ′|ϕ〉∗, |ψ〉, |ϕ〉 ∈ H, (24)

where ∗ represents complex conjugation.
For simplicity we shall assume the spectrum of Ĥ to be entirely discrete.

Consider then the non-Hermitian eigenvalue problem of the operator Ĥ

Ĥ|ψnλ(~q)〉 = Λn(~q)|ψnλ(~q)〉, (25)

where |ψnλ〉 is an eigenvector and Λn the corresponding eigenvalue. The number
λ distinguishes between different eigenvectors belonging to some degenerate
eigenvalue. Eigenvalues Λn are generally not real. We should also consider the
eigenvalue problem of the adjoint operator Ĥ†:

Ĥ†|ψ̃nλ(~q)〉 = Λ̃n(~q)|ψ̃nλ(~q)〉, (26)

assuming that its eigenvectors can be orthonormalised according to

〈ψ̃nλ(~q)|ψn′λ′(~q)〉 = δnn′δλλ′ . (27)

For the non-Hermitian case an expansion theorem in series of eigenvectors
seldom can be established in a rigorous manner. Here we assume that both
{|ψnλ〉} and {|ψ̃nλ〉} are complete sets of vectors in Hilbert space H. Therefore
any vector |Φ〉 ∈ H can be represented by the series

|Φ〉 =
∑
nλ

cnλ|ψnλ〉, (28)

with coefficients given by

cnλ = 〈ψ̃nλ|Φ〉. (29)

Equations (28) and (29) can be summarised in a closure relation∑
nλ

|ψnλ〉〈ψ̃nλ| = Î , (30)

which generalises the well-known result for Hermitian operators.
Let us now return to the solution of the initial value problem (21). With the

expansion (28) for the vector |ΦI(~q)〉, which represents the state of the system
at time t = 0, we obtain a formal solution for any time t :

|Φ(~q, t)〉 =
∑
nλ

c
(I)
nλ(~q)etΛn(~q)|ψnλ(~q)〉. (31)
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Here, we have

c
(I)
nλ(~q) = 〈ψ̃nλ(~q)|ΦI(~q)〉. (32)

3. The Stationary Perturbation Solution

We now show how, in the limit of small wave vectors and long times, the
solution of the BE leads to the hydrodynamic (macroscopic) description (Section
1a). We formulate the transport problem, starting from the BE by means
of an analysis of its eigenvalue problem. In addition, we establish explicit
microscopic expressions for the transport coefficients of swarm particles. These
microscopic expressions give the transport coefficients in terms of the solutions of
the eigenvalue problem associated with the BE. In macroscopic theory (Section
1a) these transport coefficients were introduced as phenomenological constants.

We limit ourselves to looking at the phenomena varying slowly in space; this
means that in the Fourier transform (10), the only coefficients that are relevant
correspond to the small values of ~q. When the wave vector ~q is small, equation
(21) can be treated as composed of the principal kinetic equation for homogeneous
evolution of the one-particle distribution

∂

∂t
|Φ(t)〉 = Ĥ0|Φ(t)〉, (33)

and the perturbation Ĥ ′ (convective term).
Our procedure, based on the Résibois (1970) method of derivation of linear

transport coefficients is to solve equation (21) by perturbation calculus, considering
Ĥ ′ as a small perturbation in the long-wavelength limit ~q → 0.

We have thus to discuss first the spectral properties of the unperturbed operator
Ĥ0. For simplicity we assume that the spectrum of Ĥ0 is entirely discrete. The
unperturbed eigenvalue problem has the form

Ĥ0|ψ(0)
nλ 〉 = Λ(0)

n |ψ
(0)
nλ 〉. (34)

Since Ĥ0 is not a symmetric operator, we are obliged to use a biorthonormal set
of eigenvectors; thus, together with equation (34), we have to study the adjoint
eigenvalue problem

Ĥ†0 |ψ̃
(0)
nλ 〉 = Λ̃(0)

n |ψ̃
(0)
nλ 〉. (35)

The sets {|ψ(0)
nλ 〉} and {|ψ̃(0)

nλ 〉} can always be made biorthonormal:

〈ψ̃(0)
nλ |ψ

(0)
n′λ′〉 = δnn′δλλ′ , (36)

and again we assume that these sets are complete, i.e.∑
nλ

|ψ(0)
nλ 〉〈ψ̃

(0)
nλ | = Î . (37)
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Further discussion requires additional assumptions about the spectral properties
of the operators Ĥ0 and Ĥ.

Assumption I: There exists an isolated eigenvalue Λ(0)
n̄ such that

Re Λ(0)
n < Re Λ(0)

n̄ , ∀n 6= n̄. (38)

Let

1
τ0

= d0 = inf
n6=n̄
|Re Λ(0)

n − Re Λ(0)
n̄ |. (39)

In the kinetic theory of neutral gases, such an assumption implies separation
of the relaxation timescale τ0 ∝ (d0)−1, and the hydrodynamic timescale
τh ∝ (q(kBT ) 1

2 )−1 (Sirovich and Thurber 1969) (τh is the time a swarm particle
needs to travel the length of macroscopic gradients and kBT is the mean random
energy of a swarm particle). Macroscopic lengths and collisional invariants play
a significant role in the neutral gas theory approach to hydrodynamics (Balescu
1975). The swarm may freely exchange momentum and energy with the neutral
gas. The number of particles may also change if reactions are allowed. Thus,
there are no collisional invariants. In the transport theory of charged particles
the role of condition (38) was clearly established in the work by Kumar (1981),
a study of short-time development of swarms. He has shown that, subject
to Assumption I, the time-dependent transport coefficients (Kumar 1984) all
approach their hydrodynamic values in the same characteristic time.

The spectrum of Ĥ varies continuously with ~q, coinciding with the spectrum
of Ĥ0 when ~q = 0, i.e. Ĥ ′ = 0. We wish to calculate the eigenvalue Λn̄(~q) of Ĥ
that tends to Λ(0)

n̄ when ~q → 0, and to determine the corresponding eigenvectors
of Ĥ. We assume that the eigenvalue Λ(0)

n̄ is nondegenerate. Eigenvalue Λn̄(~q)
will also be non-degenerate. The corresponding eigenvector, |ψn̄(~q)〉, is defined to
within a constant which may be arbitrarily fixed so we impose the normalisation
condition

〈ψ̃(0)
n̄ |ψn̄(~q)〉 = 〈ψ̃(0)

n̄ |ψ(0)
n̄ 〉 = 1. (40)

With this condition, |ψn̄(~q)〉 tends to |ψ(0)
n̄ 〉 when ~q → 0.

The second assumption is always implicit in any microscopic approach to
transport problem (Résibois and De Leener 1977; Kato 1966):

Assumption II (upper semicontinuity of spectrum):
The small perturbation Ĥ ′ shifts slightly the eigenvalues of Ĥ0 (and introduces

the dependence on ~q), but assumption (38) remains valid for eigenvalues of Ĥ in
the long-wavelength limit ~q → 0:

Re Λn(~q) < Re Λn̄(~q), ∀n 6= n̄; ~q → 0. (41)

This assumption, which plays a crucial role in derivation of the GDE, states that
the spectrum σ(Ĥ0) of the unperturbed operator Ĥ0 does not expand suddenly
when ~q is changed continuously. Note that Assumptions I and II are yet to be
proven for classes of operators occurring in the kinetic theory of swarm particles.
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Therefore, for all n 6= n̄, we have

lim
t→∞

lim
~q→0

|c(I)nλ(~q)etΛn(~q)|ψnλ(~q)〉 |
|c(I)n̄ (~q)etΛn̄(~q)|ψn̄(~q)〉 |

= 0. (42)

Consequently, as the prevailing contribution to the solution (31) in the double
limit (~q → 0, t → ∞) is given by the perturbed eigenvector |ψn̄(~q)〉 associated
with the perturbed eigenvalue Λn̄(~q), we obtain an asymptotic formula:

|Φ(~q, t)〉 ' c(I)n̄ (~q)etΛn̄(~q)|ψn̄(~q)〉, ~q → 0, tÀ τ0. (43)

Taking the time derivative of (43), we get

∂

∂t
|Φ(~q, t)〉 = Λn̄(~q)|Φ(~q, t)〉, ~q → 0. (44)

Since the Fourier transform n~q(t) of the swarm particle density is

n~q(t) = 〈f (0)|Φ(~q, t)〉, (45)

we also get

∂

∂t
n~q(t) = Λn̄(~q)n~q(t), ~q → 0. (46)

By taking the limit where t becomes large and ~q small, we have reduced the
solution of the BE problem (1) to the calculation of one single eigenvalue of the
problem (25) in the limit where ~q becomes small.

The fact that ~q is small suggests that we evaluate the basic eigenvalue Λn̄(~q)
and the eigenvector |ψn̄(~q)〉 by perturbation calculus. We assume that Λn̄(~q) and
|ψn̄(~q)〉 can be expanded into the converging series

Λn̄(~q) = Λ(0)
n̄ + Λ(1)

n̄ + Λ(2)
n̄ + · · ·+ Λ(p)

n̄ + · · · , (47)

|ψn̄(~q)〉 = |ψ(0)
n̄ 〉+ |ψ(1)

n̄ 〉+ |ψ(2)
n̄ 〉+ · · ·+ |ψ(p)

n̄ 〉+ · · · , (48)

where Λ(p)
n̄ and |ψ(p)

n̄ 〉 are the pth order perturbation contributions to Λn̄(~q)
and |ψn̄(~q)〉, respectively. The perturbation method consists of determining the
successive expansion terms in (47) and (48).

We have shown that the orthogonality property and the closure relation
can be generalised to non-Hermitian operators, if we use biorthonormal sets
of eigenvectors. It can be proved that the standard formulae of perturbation
calculus remain valid in non-Hermitian perturbation with minor modifications.
The equations for corrections are obtained from equation (25) using the expansions
(47) and (48), treating the perturbation Ĥ ′ as the first order term, and grouping
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terms of the same order. Solutions for the pth order corrections can be presented
in the form

Λ(1)
n̄ = 〈ψ̃(0)

n̄ |Ĥ ′|ψ(0)
n̄ 〉, (49)

Λ(p)
n̄ = 〈ψ̃(0)

n̄ |Ĥ ′|ψ(p−1)
n̄ 〉, p ≥ 2, (50)

|ψ(1)
n̄ 〉 = [Λ(0)

n̄ − Ĥ0]−1Q̂Ĥ ′|ψ(0)
n̄ 〉, (51)

|ψ(p)
n̄ 〉 = [Λ(0)

n̄ − Ĥ0]−1Q̂

[
Ĥ ′|ψ(p−1)

n̄ 〉 −
p−1∑
s=1

Λ(s)
n̄ |ψ(p−s)

n̄ 〉
]
, p ≥ 2. (52)

The steps in the evaluation of equations (49)–(52) that differ from the Hermitian
case are outlined in Appendix A. These equations effectively determine Λ(p)

n̄ and
|ψ(p)
n̄ 〉 in terms of the lower order corrections. Condition (40) becomes

〈ψ̃(0)
n̄ |ψ(1)

n̄ 〉 = 〈ψ̃(0)
n̄ |ψ(2)

n̄ 〉 = · · · = 〈ψ̃(0)
n̄ |ψ(p)

n̄ 〉 = · · · = 0. (53)

The operator

Q̂ = Î − |ψ(0)
n̄ 〉〈ψ̃(0)

n̄ | (54)

is a projector (but not orthogonal) onto the subspace complementary to the
subspace spanned by the basic eigenvector |ψ(0)

n̄ 〉. Since the operator Λ(0)
n̄ − Ĥ0 is

singular, it is clear that the inverse operator [Λ(0)
n̄ − Ĥ0]−1 cannot be defined on

the whole Hilbert space H. In equations (51) and (52) the operator [Λ(0)
n̄ − Ĥ0]−1

is well defined because the range of Q̂ does not contain the vectors of the kernel
of Λ(0)

n̄ − Ĥ0, imQ̂ ∩ ker(Λ(0)
n̄ − Ĥ0) = ∅. Furthermore, from the closure relation

(37) and definition (54), it is obvious that the operator [Λ(0)
n̄ − Ĥ0]−1Q̂ can be

written in the form of a series of elementary, non-orthogonal projectors:

[Λ(0)
n̄ − Ĥ0]−1Q̂ =

∑
n6=n̄

∑
λ

1

Λ(0)
n̄ − Λ(0)

n

|ψ(0)
nλ 〉〈ψ̃

(0)
nλ |. (55)

The higher order corrections involve an increasing number of the operators
[Λ(0)
n̄ − Ĥ0]−1Q̂Ĥ ′, the norm of which is the scale of relative perturbation.

Consequently, the magnitude of the perturbative corrections is a rapidly diminishing
function of the order p.

The projector Î − Q̂ is an essential part of the theory of Kondo (1987).
Projector operators occurring in our analysis play a less important role.

(3a) Hydrodynamic Regime and Transport Coefficients

Using the explicit form of the convective operator Ĥ ′ = −i~q · ~̂v, let us show how
equation (46) leads to the GDE, with microscopic expressions for the transport
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coefficients, as well. First we introduce the quantities ω(p) and χ(p) which are
defined through a set of coupled recursive relations:

ω̂(0) = 〈ψ̃(0)
n̄ |Ĥ0|ψ(0)

n̄ 〉, (56)

||χ(0)
n̄ 〉〉 = |ψ(0)

n̄ 〉, (57)

ω̂(1) = 〈ψ̃(0)
n̄ |~̂v ||χ(0)

n̄ 〉〉, (58)

||χ(1)
n̄ 〉〉 = [ω̂(0) − Ĥ0]−1Q̂~̂v ||χ(0)

n̄ 〉〉, (59)

ω̂(p) = 〈ψ̃(0)
n̄ |~̂v ||χ(p−1)

n̄ 〉〉, p ≥ 2, (60)

||χ(p)
n̄ 〉〉 = [ω̂(0) − Ĥ0]−1Q̂

[
~̂v ||χ(p−1)

n̄ 〉〉 −
p−1∑
s=1

ω̂(s) ⊗ ||χ(p−s)
n̄ 〉〉

]
, p ≥ 2, (61)

with notation

~̂v ||χ(0)
n̄ 〉〉 =

(
v̂α1 ||χ

(0)
n̄ 〉〉

)
, α1 = 1, 2, 3, (62)

ω̂(s) ⊗ ||χ(p−s)
n̄ 〉〉 =

(
ω̂(s)
α1,...,αs ||χ

(p−s)
n̄ 〉〉αs+1,...,αp

)
,

α1, . . . , αp = 1, 2, 3; s = 1, . . . , p− 1; p ≥ 2, (63)

~̂v |χ(p−1)
n̄ 〉〉 =

(
v̂α1 |χ

(p−1)
n̄ 〉〉α2,...,αp

)
, α1, . . . , αp = 1, 2, 3; p ≥ 2. (64)

Inserting corrections (49)–(52) into equations (47) and (48), and having in
mind equations (56)–(61) we find that the perturbed eigenvector (48) can be
expressed as

|ψn̄(~q)〉 =
∞∑
p=0

|ψ(p)
n̄ 〉 =

∞∑
p=0

(−i~q)p ⊗ ||χ(p)
n̄ 〉〉, (65)

and the basic, perturbed eigenvalue (47) has the form

Λn̄(~q) =
∞∑
p=0

Λ(p)
n̄ =

∞∑
p=0

(−i~q)p ¯ ω̂(p). (66)
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The symbol ¯ indicates the k-fold scalar product. The condition (53) becomes

〈ψ̃(0)
n̄ ||χ(1)

n̄ 〉〉 = 0, 〈ψ̃(0)
n̄ ||χ(2)

n̄ 〉〉 = 0, · · · , 〈ψ̃(0)
n̄ ||ψ(p)

n̄ 〉〉 = 0. (67)

Substituting equation (66) into equation (46) we obtain the spatial Fourier
transform of GDE (2):

∂

∂t
n~q(t)−

∞∑
p=0

(−i~q)p ¯ ω̂(p)n~q(t) = 0. (68)

The transport coefficients are determined with the microscopic expressions
(56)–(61). These equations give the transport coefficients ω̂(p) for all p ≥ 0 in
terms of solutions of the eigenvalue problems (34) and (35). For example, using
the equations (50) and (51) together with the spectral decomposition of the
operator [Λ(0)

n̄ − Ĥ0]−1Q̂ (see equation 55), the diffusion tensor D̂ ≡ ω̂(2) can be
expressed as

D̂ ≡ ω̂(2) =
∑
n6=n̄

∑
λ

1
ω̂(0) − Λ(0)

n

〈ψ̃(0)
n̄ |~̂v|ψ(0)

nλ 〉〈ψ̃
(0)
nλ |~̂v|ψ

(0)
n̄ 〉. (69)

An explicit expression for the third order transport coefficient ω̂(3) can be
derived by using expressions (56)–(61). Using equation (55) and condition (36),
one obtains for the third order transport coefficients ω̂(3) the expression:

ω̂(3) =
∑
n6=n̄

∑
λ

∑
n′ 6=n̄

∑
λ′

1
ω̂(0) − Λ(0)

n

1

ω̂(0) − Λ(0)
n′

〈ψ̃(0)
n̄ |~̂v|ψ(0)

nλ 〉

× 〈ψ̃(0)
nλ |~̂v|ψ

(0)
n′λ′〉〈ψ̃

(0)
n′λ′ |~̂v|ψ

(0)
n̄ 〉 − 〈ψ̃(0)

n̄ |~̂v|ψ(0)
n̄ 〉

∑
n6=n̄

∑
λ

1(
ω̂(0) − Λ(0)

n

)2 〈ψ̃
(0)
n̄ |~̂v|ψ(0)

nλ 〉〈ψ̃
(0)
nλ |~̂v|ψ

(0)
n̄ 〉. (70)

In the case of transport coefficients of order higher than three, one can proceed
in an analogous way.

To summarise the results of this section, we have obtained the generalised
diffusion equation and the transport coefficients of swarm particles from the
eigenvalue problem associated with the inhomogeneous BE.

(3b) Hierarchy of Kinetic Equations for Transport Coefficients

In previous sections we have proved under Assumptions I and II that if we
take times tÀ τ0, and provided ~q is small enough, the solution of the initial value
problem (21) is given by equation (43), where the basic perturbed eigenvector
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|ψn̄(~q)〉 and eigenvalue Λn̄(~q) can be expressed as (65) and (66), respectively.
Combining (43), (45) and (65), we finally get

|Φ(~q, t)〉 =
∞∑
p=0

||χ(p)
n̄ 〉〉 ⊗ (−i~q)pn̄~q(t), (71)

where

n̄~q(t) = c
(I)
n̄ (~q)etΛn̄(~q) =

1
〈f (0)|ψn̄(~q)〉

n~q(t). (72)

Notice that vectors ||χ(p)
n̄ 〉〉 satisfy the normalisation conditions (67), and that

c
(I)
n̄ (~q) = 〈ψ̃n̄(~q)|ΦI(~q)〉 → c

0(I)
n̄ (~q) = 〈ψ̃(0)

n̄ |ΦI(~q)〉, ~q → 0. (73)

Taking the inverse Fourier transform of equation (71), the one-particle
distribution function has the form

|f(~r, t)〉 =
∞∑
p=0

||χ(p)
n̄ 〉〉 ⊗

(
− ∂

∂~r

)p
n̄(~r, t), (74)

where n̄(~r, t) is the inverse Fourier transform of n̄~q(t). Since

n̄(~r, t) = 〈ψ̃(0)
n̄ |f(~r, t)〉 6= 〈f (0)|f(~r, t)〉 = n(~r, t), (75)

the gradient expansions (3) and (74) are not identical. Their forms are equivalent
in the sense of separation of velocity and space–time dependence of the one-particle
distribution function. The difference between the two expansions arises from
different normalisation procedures. The normalisation as used by Kumar is given
in equation (8). It should be compared to our choice given in equation (67)
which was made in order to make it possible to derive microscopic expressions
of transport coefficients based only on solutions to the eigenvalue problems for
Ĥ0 and Ĥ†0 . Inserting equations (66) and (73) into (72), equation (74) can be
written in the form

|f(~r, t)〉 =
∞∑
p=0

||χ(p)
n̄ 〉〉 ⊗

(
− ∂

∂~r

)p
eω̂

(0)t

∫
d3~qc

0(I)
n̄ (~q)e+i~q~r

∞∏
s=1

e(−i~q)s¯ω̂(s)t. (76)

Our approach strongly suggests that the solution (76) of the BE, obtained
for arbitrary initial conditions, properly describes the long-time behaviour of a
swarm of charged particles with slowly varying inhomogeneities.

We are now able to demonstrate the equivalence between the microscopic
expressions for the transport coefficients (56)–(61) and the hierarchy of kinetic
equations (4)–(5). Since 〈ψ̃(0)

n̄ ||χ(0)
n̄ 〉〉 = 1, equation (56) implies that

Ĥ0 ||χ(0)
n̄ 〉〉 = ω̂(0) ||χ(0)

n̄ 〉〉. (77)
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Applying the operator ω̂(0) − Ĥ0 to both sides of equations (59) and (61) and
using equations (58), (60) and (67) yields:

(−Ĥ0) ||χ(p)
n̄ 〉〉 = ~̂v ||χ(p−1)

n̄ 〉〉 −
p∑
s=0

ω̂(s) ⊗ ||χ(p−s)
n̄ 〉〉, p ≥ 1. (78)

Thus we have obtained that the expansion vectors ||χ(p)
n̄ 〉〉 and transport coefficients

ω̂(p) satisfy the hierarchy of equations (77) and (78). This result is equivalent
to the formulae (4) and (5) of Kumar’s theory.

Projecting equations (77) and (78) onto the basic eigenvector |ψ(0)
n̄ 〉 gives

ω̂(0) =
1

|| |ψ(0)
n̄ 〉 ||2

〈ψ(0)
n̄ |Ĥ0 ||χ(0)

n̄ 〉〉, (79)

ω̂(p) =
1

|| |ψ(0)
n̄ 〉 ||2

[
〈ψ(0)
n̄ |~̂v ||χ(p−1)

n̄ 〉〉 − 〈ψ(0)
n̄ |(−Ĥ0) ||χ(p)

n̄ 〉〉

−
p−1∑
s=0

ω̂(s) ¯ 〈ψ(0)
n̄ ||χ(p−s)

n̄ 〉〉
]
, p ≥ 1. (80)

The third term in expression (80) exists due to the fact that in the non-Hermitian
case, the normalisation condition (67) implies 〈ψ(0)

n̄ ||χ(p)
n̄ 〉〉 6= 0. These equations

show that the transport coefficients ω̂(p) depend only on the velocity-dependent
part of the one-particle distribution function. This condition was never imposed,
it arises naturally and it also implies that the final values of the transport
coefficients are reached regardless of initial conditions.

In this section we have applied the technique of Résibois which was originally
developed for transport of neutral particles. Applying it to swarms of charged
particles in an electric field proved to be straightforward, i.e. without major
difficulties.

4. Time-dependent Perturbation Method

In the preceding sections, we have treated the problem of charged particle
transport by the stationary perturbation method which consists of determining
eigenvectors and eigenvalues for the perturbed operator Ĥ differing little from
the unperturbed operator Ĥ0. This section is devoted to methods of investigating
the time evolution of a system of charged particles based on a time-dependent
perturbation theory.

Knowing that vector |ΦI(~q)〉 (equation 21) represents a certain state of the
swarm at time t = 0, we wish to determine its state |Φ(~q, t)〉 at a later time
t. The problem, therefore, is to determine the operator describing the evolution
in time of the swarm particles in accordance with the kinetic equation (21).
The correspondence between |ΦI(~q)〉 and |Φ(~q, t)〉 is linear and defines a linear
evolution operator Û(t):

|Φ(~q, t)〉 = Û(t)|ΦI(~q)〉. (81)
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According to equations (22) and (30), the operator Û(t) can be formally written
as

Û(t) = etĤ =
∑
n,λ

etΛn |ψnλ〉〈ψ̃nλ|. (82)

The operator Û(t) is the solution of the differential equation

d

dt
Û(t) = ĤÛ(t), Û(0) = Î . (83)

Since Ĥ is not a Hermitian operator, it is obvious that evolution operator Û(t)
is not unitary. We wish to determine as exactly as possible the operator Û(t)
without any reference to the eigenvalue problem of the perturbed operator Ĥ. The
methods briefly described below are based on the time-dependent perturbation
theory which has been developed for Hermitian operators in quantum mechanics
(Messiah 1974).

Let Û0(t) be the evolution operator corresponding to the unperturbed operator
Ĥ0; consequently operator Û0 satisfies the differential equation

d

dt
Û0(t) = Ĥ0Û0(t), Û0(0) = Î . (84)

In our case when Ĥ0 is time independent, the evolution operator Û0(t) becomes
simply

Û0(t) = etĤ0 =
∑
n,λ

etΛ
(0)
n |ψ(0)

nλ 〉〈ψ̃
(0)
nλ |. (85)

The properties of Û0(t) are thus directly related to those of Ĥ0. Since Û0(t) is
known, Û will be determined if we can form the operator ÛI defined as

Û(t) = Û0(t)ÛI(t). (86)

A simple calculation shows that the time dependence of ÛI(t) is determined
by the equation

d

dt
ÛI(t) = Ĥ ′I(t)ÛI(t), ÛI(0) = Î , (87)

where operator Ĥ ′I(t) is a perturbation operator Ĥ ′ in the ‘interaction picture’:

Ĥ ′I(t) = Û−1
0 (t)Ĥ ′Û0(t). (88)

Equation (87) is equivalent to the integral equation

ÛI(t) = Î +
∫ t

0

dt1Ĥ
′
I(t1)ÛI(t1). (89)
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The integral in equation (89) can be solved by iteration (in powers of Ĥ ′I) yielding

ÛI(t) = Î +
∞∑
p=1

Û
(p)
I (t), (90)

where

Û
(p)
I (t) =

∫ t

0

dt1Ĥ
′
I(t1)

∫ t1

0

dt2Ĥ
′
I(t2) · · ·

∫ tp−1

0

dtpĤ
′
I(tp), p ≥ 1. (91)

From this result, with the aid of definitions (86) and (88), we get the following
expansion for Û :

Û(t) = Û (0)(t) +
∞∑
p=1

Û (p)(t), (92)

Û (0)(t) = Û0(t), (93)

Û (p)(t) =
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tp−1

0

dtpÛ
(0)(t− t1)Ĥ ′Û (0)(t1 − t2)Ĥ ′ · · ·

· · · Û (0)(tp−1 − tp)Ĥ ′Û (0)(tp), p ≥ 1 . (94)

Using equations (81) and (92), one obtains the expansion of |Φ(~q, t)〉

|Φ(~q, t)〉 =
∞∑
p=0

|Φ(p)(~q, t)〉, (95)

where

|Φ(p)(~q, t)〉 = Û (p)(t)|ΦI(~q)〉. (96)

Inserting the explicit form of the convective operator Ĥ ′ = −i~q~̂v into equation
(94), and by using (95) and (96), we get that the vector |Φ(~q, t)〉 can be expressed
as

|Φ(~q, t)〉 =
∞∑
p=0

(−i~q)p ⊗ ||(p)(~q, t)〉〉, (97)

where

||(0)(~q, t)〉〉 = etĤ0 |ΦI(~q)〉, (98)
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||(p)(~q, t)〉〉 =
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tp−1

0

dtpe
(t−t1)Ĥ0~̂ve(t1−t2)Ĥ0~̂v · · ·

· · · e(tp−1−tp)Ĥ0~̂vetpĤ0 |ΦI(~q)〉, p ≥ 1. (99)

As may be checked by direct differentiation of equations (98) and (99), the
vectors ||(p)(~q, t)〉〉 satisfy the following infinite set of equations:

∂

∂t
||(0)(~q, t)〉〉 = Ĥ0 ||(0)(~q, t)〉〉, (100)

∂

∂t
||(p)(~q, t)〉〉 = Ĥ0 ||(p)(~q, t)〉〉+ ~̂v ||(p−1)(~q, t)〉〉, p ≥ 1. (101)

Replacing the exponential operators in (98) and (99) with corresponding
expansions in series of non-orthogonal projectors (equation 85), one finds

||(0)(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)|ψ(0)

nλ 〉etΛ
(0)
n , (102)

||(p)(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)

∑
n1,λ1

∑
n2,λ2

· · ·
∑
np,λp

〈ψ̃(0)
npλp
|~̂v|ψ(0)

np−1λp−1
〉 · · ·

· · · 〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
npλp
〉
∫ t

0

dt1

∫ t1

0

dt2 · · · (103)

· · ·
∫ tp−1

0

dtpe
tpΛ(0)

n e(tp−1−tp)Λ(0)
n1 · · · e(t1−t2)Λ(0)

np−1 e
(t−t1)Λ(0)

np , p ≥ 1.

Here

c
0(I)
nλ (~q) = 〈ψ̃(0)

nλ |ΦI(~q)〉. (104)

Since n~q(t) = 〈f (0)|Φ(~q, t)〉, we also get

n~q(t) =
∞∑
p=0

(−i~q)p ¯ N̂ (p)
∗ (~q, t), (105)

where

N̂
(p)
∗ (~q, t) = 〈f (0) ||(p)(~q, t)〉〉, p = 0, 1, 2, . . . , (106)

are tensors of order p. The quantities N̂
(p)
∗ (~q, t) are analogous to the spatial

moments of the number density n(~r, t) (Kumar 1981).
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A hierarchy of tensor functions ω̂(p)
∗ (~q, t) of rank p is now introduced by the

definitions

∂

∂t
N̂

(p)
∗ (~q, t) =

p∑
r=0

ω̂
(r)
∗ (~q, t)¯ N̂ (p−r)

∗ (~q, t), p = 0, 1, 2, . . . . (107)

It easily follows from definitions (107) and equation (105) that

∂

∂t
n~q(t)−

∞∑
p=0

(−i~q)p ¯ ω̂(p)
∗ (~q, t)n~q(t) = 0. (108)

Guided by analogies with the Fourier transform of the GDE (2), tensors
ω̂

(p)
∗ (~q, t) may be regarded as time-dependent transport coefficients. Since the ~q

dependence of the transport coefficients ω̂(p)
∗ (~q, t) has its origin in the ~q dependence

of the initial vector |φI(~q)〉 [see equations (102) – (104)], we conclude that ω̂(p)
∗ (~q, t)

can be related to various Fourier components of the initial distribution function.
We shall try to find vector |Φ(~q, t)〉 (equation 97) for times tÀ τ0 and arbitrary

values of ~q. This will be carried out by using only Assumption I (equation
38). It will be shown that for the long-time limit, the vector |Φ(~q, t)〉 (equation
97) can be transformed into the hydrodynamics form (71). We shall also show
that for the long-time limit all ω̂(p)

∗ (~q, t) become time and ~q independent in the
same characteristic time and achieve their hydrodynamic values given by the
microscopic expressions (56), (58) and (60).

First let us try to find vectors ||(p)(~q, t)〉〉 for times t À τ0. Starting from
equations (102)–(103) and using only Assumption I, we obtain the following
asymptotic formulae for the first four vectors:

||(0)(~q, t)〉〉 ' c0(I)
n̄ (~q)etΛ

(0)
n̄ ||χ(0)

n̄ 〉〉, tÀ τ0, (109)

||(1)(~q, t)〉〉 ' c0(I)
n̄ (~q)etΛ

(0)
n̄

[
tω̂(1) ⊗ ||χ(0)

n̄ 〉〉+ ||χ(1)
n̄ 〉〉

]
, tÀ τ0, (110)

||(2)(~q, t)〉〉 ' c0(I)
n̄ (~q)etΛ

(0)
n̄

[
t2

2
ω̂(1) ¯ ω̂(1) ⊗ ||χ(0)

n̄ 〉〉+ tω̂(1) ⊗ ||χ(1)
n̄ 〉〉

+ tω̂(2) ⊗ ||χ(0)
n̄ 〉〉+ ||χ(2)

n̄ 〉〉
]
, tÀ τ0, (111)

||(3)(~q, t)〉〉 ' c0(I)
n̄ (~q)etΛ

(0)
n̄

[
t3

6
ω̂(1) ¯ ω̂(1) ¯ ω̂(1) ⊗ ||χ(0)

n̄ 〉〉

+
t2

2
ω̂(1) ¯ ω̂(1) ⊗ ||χ(1)

n̄ 〉〉+
t2

2
ω̂(1) ¯ ω̂(2) ⊗ ||χ(0)

n̄ 〉〉

+tω̂(1) ⊗ ||χ(2)
n̄ 〉〉+

t2

2
ω̂(2) ¯ ω̂(1) ⊗ ||χ(0)

n̄ 〉〉

+tω̂(2) ⊗ ||χ(1)
n̄ 〉〉+ tω̂(3) ⊗ ||χ(0)

n̄ 〉〉+ ||χ(3)
n̄ 〉〉

]
, tÀ τ0. (112)
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The details of the calculation for ||(0)(~q, t)〉〉, . . . , ||(3)(~q, t)〉〉 are given in
Appendix B. In practice the calculation of these vectors becomes increasingly
complicated with higher orders. Tensors ω̂(1), ω̂(2) and ω̂(3) are given by
microscopic expressions (58), (69) and (70). Vectors ||χ(1)

n̄ 〉〉, . . . , ||χ(3)
n̄ 〉〉, defined

by equations (57), (59) and (61), can also be expressed in terms of the solution
of the eigenvalue problems (34) and (35) [see equations (141)–(142) in Appendix
B.

Replacing the above asymptotic expressions for ||(p)(~q, t)〉〉 into equation (97),
after a suitable rearrangement of the terms, leads to the following form of |Φ(~q, t)〉
for tÀ τ0:

|Φ(~q, t)〉 =
∞∑
p=0

||χ(p)
n̄ 〉〉 ⊗ (−i~q)pc0(I)

n̄ (~q)etΛ
(0)
n̄ Ω~q(t), (113)

where

Ω~q(t) = 1 + (−i~q)¯ ω̂(1)t+ (−i~q)2 ¯ ω̂(1) ¯ ω̂(1) t
2

2
+ (−i~q)2 ¯ ω̂(2)t

+ (−i~q)3 ¯ ω̂(1) ¯ ω̂(1) ¯ ω̂(1) t
3

6
+ (−i~q)3 ¯ ω̂(1) ¯ ω̂(2) t

2

2

+ (−i~q)3 ¯ ω̂(2) ¯ ω̂(1) t
2

2
+ (−i~q)3 ¯ ω̂(3)t+ · · ·

=
[
1 + (−i~q)¯ ω̂(1)t+ 1

2 (−i~q)2 ¯ (ω̂(1))2t2 + 1
6 (−i~q)3 ¯ (ω̂(1))3t3 + · · ·

]
×
[
1 + (−i~q)2 ¯ ω̂(2)t+ 1

2 (−i~q)4 ¯ (ω̂(2))2t2 + · · ·
]

×
[
1 + (−i~q)3 ¯ ω̂(3)t+ · · ·

]
[1 + · · ·] · · · . (114)

By induction, it is easy to verify that

Ω~q(t) =
∞∏
s=1

{
1 +

∞∑
r=1

[(−i~q)s]r ¯
[
ω̂(s)

]r
tr

}
=
∞∏
s=1

e(−i~q)s¯ω̂(s)t. (115)

Introducing the expression (115) into (113) leads to

|Φ(~q, t)〉 =
∞∑
p=0

||χ(p)
n̄ 〉〉 ⊗ (−i~q)pn̄0

~q(t), tÀ τ0, (116)

where

n̄0
~q(t) = c

0(I)
n̄ (~q)e

∑∞
s=0(−i~q)s¯ω̂(s)t. (117)
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Thus we have found an explicit expression for the arbitrary wave number
Fourier coefficient |Φ(~q, t)〉 in the limit of long times, t À τ0. One should note
that the inverse Fourier transform of equation (116) and expression (76) are
identical.

We have accomplished the first part of our plan: the long-time behaviour
of the one particle distribution function. In the following we shall carry out
the second part: the determination of the time-dependent transport coefficient
ω̂

(p)
∗ (~q, t) for long times.
We start from the definitions (107). The derivative with respect to time

occurring in equation (107) can be eliminated with the help of (100)–(101).
Combining (107), (106) and (100)–(101) we can write

ω̂
(0)
∗ (~q, t) =

1
〈f (0) ||(0)(~q, t)〉〉

〈f (0)|Ĥ0 ||(0)(~q, t)〉〉, (118)

ω̂
(p)
∗ (~q, t) =

1
〈f (0)||(0)(~q, t)〉〉

[
〈f (0)|~̂v||(p−1)(~q, t)〉〉+ 〈f (0)|Ĥ0 ||(p)(~q, t)〉〉

−
p−1∑
s=0

ω̂
(s)
∗ (~q, t)¯ 〈f (0) ||(p−s)(~q, t)〉〉

]
, p ≥ 1. (119)

We are interested in times t À τ0. Introducing asymptotic expressions for
vectors ||(p)(~q, t)〉〉 [see equations (109)–(112)] into (118) and (119), and using
the hierarchy of equations (77) and (78), we obtain that

ω̂
(p)
∗ (~q, t) ' ω̂(p), tÀ τ0; p = 0, 1, 2, . . . . (120)

The present derivation, which can be carried out for any ~q, shows that all
time-dependent transport coefficients ω̂(p)

∗ (~q, t) achieve their hydrodynamic values
ω̂(p) in the same characteristic time. As a result, for t À τ0, equation (108)
reduces directly to the spatial Fourier transform of the GDE (2).

5. Conclusion

In this paper we have analysed the foundations of the transport theory of
charged particle swarms in neutral gases. In particular, we have studied the
properties of operators Ĥ0 and Ĥ occurring in the BE and their relationship
to transport coefficients and the one-particle distribution function by applying
perturbation theory.

In the first part of the paper we studied weakly inhomogeneous swarms (i.e.
with small relative density gradients). The method of Résibois was generalised
for the case of charged particle transport in the presence of a static and uniform
electric field. Two critical assumptions were required about the spectrum of the
operator Ĥ0:
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(A1) There is an isolated eigenvalue of the operator Ĥ0 which is separated
from the rest of the spectrum by the gap along the real axis.

(A2) The perturbation Ĥ ′, for small values of the wave vector ~q, has a small
effect on the spectrum of the operator Ĥ0; i.e. the spectrum of the
perturbed operator Ĥ also has an isolated eigenvalue separated from the
rest of the spectrum along the real axis.

Furthermore it was possible to obtain the GDE in a double limit (~q → 0, t→∞),
a result (in this theory it is not an assumption) arising from the application of
the stationary perturbation theory for non-Hermitian operators to BE.

The isolated point of the unperturbed operator Ĥ0 may be associated with
the corresponding reaction rate. Its perturbation correction of the pth order
may be associated with the pth order transport coefficients. According to the
theoretical derivation presented here, any transport coefficient may be represented
as a function of the solutions to the eigenvalue problem for the operators Ĥ0

and Ĥ†0 . We have also shown a full equivalence of those microscopic equations
and the hierarchy of kinetic equations for the transport coefficients.

Finally, we have described the asymptotic behaviour of the solution of the
Cauchy problem for the BE. For any initial distribution of the swarm at moment
t = 0 after tÀ τ0, a separation between the spatio-temporal and the velocity part
of the one-particle distribution function occurs. At the same time, the transport
coefficients only depend on the velocity part of the one-particle distribution
function.

In the second part of the paper we have studied the time evolution of the
one-particle distribution function of a swarm of charged particles in an electric
field. In this section we have not limited our analysis to weakly inhomogeneous
swarms (i.e. small relative density gradients). Time-dependent perturbation
theory was applied to follow the evolution of the system from an arbitrary initial
distribution. The difference between our approach and that of Kumar (1981)
is that we apply time-dependent perturbation theory to the BE itself, while
Kumar applied it to a hierarchy of equations for spatial moments of one-particle
distribution function. Thus, he analysed the time dependence of spatial moments
and consequently of the transport coefficient, but not of the distribution function.

We obtained the equation (108) which is analogous to the GDE with transport
coefficients that are time dependent and implicitly depend on the wave vector.
The spatial dependence of the transport coefficients arises from their explicit
dependence on the initial distribution. In other words, every Fourier component
of the initial distribution has corresponding transport coefficients which, according
to (108), describes the temporal evolution of the corresponding Fourier component
of the number density n(~r, t).

In this section we require only the assumption (A1) and by using it we have
shown that after a time tÀ τ0 any time-dependent transport coefficient becomes
a constant. The limiting values are also independent of the wave vector and are
equal to the corresponding hydrodynamic values which were derived in the first
section of the paper.

To summarise, the basic result of this paper is the asymptotic form of the
one-particle distribution function of charged particle swarms. Only the assumption
(A1) is required to prove that by solving the BE for times tÀ τ0, the one-particle
distribution function has the form given by equation (76). Therefore, it was shown
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that after time tÀ τ0 the distribution function separates to spatio-temporal and
velocity dependent parts. In standard hydrodynamic theories this was always
one of the basic assumptions, together with the assumption of the validity of the
GDE. In the present theory both are the results of more fundamental assumptions
on the spectral properties of operators involved in Boltzmann equation.
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Appendix A

We substitute expressions (47) and (48) into both sides of equation (25), which
then becomes an equality between two series. In order that this equality is satisfied,
the terms of the same order must be equal separately, giving, successively:

Ĥ0|ψ(0)
n̄ 〉 = Λ(0)

n̄ |ψ(0)
n̄ 〉, (121)

Ĥ0|ψ(1)
n̄ 〉+ Ĥ ′|ψ(0)

n̄ 〉 = Λ(0)
n̄ |ψ(1)

n̄ 〉+ Λ(1)
n̄ |ψ(0)

n̄ 〉, (122)

Ĥ0|ψ(p)
n̄ 〉+ Ĥ ′|ψ(p−1)

n̄ 〉 = Λ(0)
n̄ |ψ(p)

n̄ 〉+
p−1∑
s=1

Λ(s)
n̄ |ψ(p−s)

n̄ 〉+ Λ(1)
n̄ |ψ(0)

n̄ 〉, p ≥ 2. (123)
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Equation (121) determines the eigenvalue and eigenvector to the zeroth order.
With conditions (53), equation (123) determines the pth order corrections to
these two quantities. Projecting equation (123) onto eigenvector |ψ̃(0)

n̄ 〉 and taking
into account equation (53) and the identity

Λ(0)
n =

(
Λ̃(0)
n

)∗
, ∀n, (124)

we obtain equation (50). From equations (123) and (122), with the aid of definition
(54), we obtain the expressions (51) and (52).

Appendix B

We present here the detailed calculation of ||(0)(~q, t)〉〉, ||(1)(~q, t)〉〉 and ||(2)(~q, t)〉〉
for long times. From equations (102) and (103), we have

||(0)(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)etΛ

(0)
n |ψ(0)

nλ 〉, (125)

||(1)(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)tetΛ

(0)
n 〈ψ̃(0)

nλ |~̂v|ψ
(0)
nλ 〉|ψ

(0)
nλ 〉+

∑
n,λ

∑
n1 6=n,λ1

c
0(I)
nλ (~q)

× 1
Λ(0)
n − Λ(0)

n1

(
etΛ

(0)
n − etΛ

(0)
n1

)
〈ψ̃(0)
n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
n1λ1
〉, (126)

||(2)(~q, t)〉〉 = ||K1(~q, t)〉〉+ ||K2(~q, t)〉〉+ ||K3(~q, t)〉〉+ ||K4(~q, t)〉〉

+ ||K5(~q, t)〉〉+ ||K6(~q, t)〉〉, (127)

where

||K1(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)

t2

2
etΛ

(0)
n 〈ψ̃(0)

nλ |~̂v|ψ
(0)
nλ 〉〈ψ̃

(0)
nλ |~̂v|ψ

(0)
nλ 〉|ψ

(0)
nλ 〉, (128)

||K2(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)

∑
n2 6=n,λ2

[
1

Λ(0)
n − Λ(0)

n2

tetΛ
(0)
n

− 1(
Λ(0)
n − Λ(0)

n2

)2 e
tΛ(0)
n +

1(
Λ(0)
n − Λ(0)

n2

)2 e
tΛ(0)
n2


× 〈ψ̃(0)

n2λ2
|~̂v|ψ(0)

nλ 〉〈ψ̃
(0)
nλ |~̂v|ψ

(0)
nλ 〉|ψ

(0)
n2λ2
〉, (129)
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||K3(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)

∑
n1 6=n,λ1

1
Λ(0)
n − Λ(0)

n1

tetΛ
(0)
n

× 〈ψ̃(0)
nλ |~̂v|ψ

(0)
n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
nλ 〉, (130)

||K4(~q, t)〉〉 =
∑
n,λ

c
0(I)
nλ (~q)

∑
n1 6=n,λ1

∑
n2 6=n,λ2

[
1

Λ(0)
n − Λ(0)

n1

1
Λ(0)
n − Λ(0)

n2

etΛ
(0)
n

− 1
Λ(0)
n − Λ(0)

n1

1
Λ(0)
n − Λ(0)

n2

etΛ
(0)
n2

]

× 〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
n2λ2
〉, (131)

||K5(~q, t)〉〉 = −
∑
n,λ

c
0(I)
nλ (~q)

∑
n1 6=n,λ1

1
Λ(0)
n − Λ(0)

n1

tetΛ
(0)
n1

× 〈ψ̃(0)
n1λ1
|~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
n1λ1
〉, (132)

||K6(~q, t)〉〉 = −
∑
n,λ

c
0(I)
nλ (~q)

∑
n1 6=n,λ1

∑
n2 6=n1,λ2

[
1

Λ(0)
n − Λ(0)

n1

1
Λ(0)
n1
− Λ(0)

n2

etΛ
(0)
n1

− 1
Λ(0)
n − Λ(0)

n1

1
Λ(0)
n1
− Λ(0)

n2

etΛ
(0)
n2

]

× 〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

nλ 〉|ψ
(0)
n2λ2
〉. (133)

For tÀ τ0, using the Assumption I (see equation 38), we have from equations
(125)–(127),

||(0)(~q, t)〉〉 = c
0(I)
n̄ (~q)etΛ

(0)
n̄ |ψ(0)

n̄ 〉, tÀ τ0, (134)

||(1)(~q, t)〉〉 = c
0(I)
n̄ (~q)etΛ

(0)
n̄ 〈ψ̃(0)

n̄ |~̂v|ψ(0)
n̄ 〉|ψ(0)

n̄ 〉+ c
0(I)
n̄ (~q)etΛ

(0)
n̄

×
∑

n1 6=n̄,λ1

1

Λ(0)
n̄ − Λ(0)

n1

〈ψ̃(0)
n1λ1
|~̂v|ψ(0)

n̄ 〉|ψ(0)
n1λ1
〉, tÀ τ0, (135)

||(2)(~q, t)〉〉 = ||L1(~q, t)〉〉+ ||L2(~q, t)〉〉+ ||L3(~q, t)〉〉

+ ||L4(~q, t)〉〉, tÀ τ0, (136)
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where

||L1(~q, t)〉〉 = c
0(I)
n̄ (~q)

t2

2
etΛ

(0)
n̄ 〈ψ̃(0)

n̄ |~̂v|ψ(0)
n̄ 〉〈ψ̃(0)

n̄ |~̂v|ψ(0)
n̄ 〉|ψ(0)

n̄ 〉, (137)

||L2(~q, t)〉〉 = c
0(I)
n̄ (~q)tetΛ

(0)
n̄ 〈ψ̃(0)

n̄ |~̂v|ψ(0)
n̄ 〉

∑
n2 6=n̄,λ2

1

Λ(0)
n̄ − Λ(0)

n2

× 〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n̄ 〉|ψ(0)
n2λ2
〉, (138)

||L3(~q, t)〉〉 = c
0(I)
n̄ (~q)tetΛ

(0)
n̄

∑
n1 6=n̄,λ1

1

Λ(0)
n̄ − Λ(0)

n1

× 〈ψ̃(0)
n̄ |~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

n̄ 〉|ψ(0)
n̄ 〉, (139)

||L4(~q, t)〉〉 = c
0(I)
n̄ (~q)etΛ

(0)
n̄

 ∑
n1 6=n̄,λ1

∑
n2 6=n̄,λ2

1

Λ(0)
n̄ − Λ(0)

n1

1

Λ(0)
n̄ − Λ(0)

n2

× 〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

n̄ 〉|ψ(0)
n2λ2
〉

−〈ψ̃(0)
n̄ |~̂v|ψ(0)

n̄ 〉
∑

n2 6=n̄,λ2

1

(Λ(0)
n̄ − Λ(0)

n2
)2
〈ψ̃(0)
n2λ2
|~̂v|ψ(0)

n̄ 〉|ψ(0)
n2λ2
〉. (140)

By means of spectral decomposition in equation (55), we obtain from equations
(56)–(61)

||χ(1)
n̄ 〉〉 =

∑
n6=n̄,λ

1
ω̂(0) − Λ(0)

n

〈ψ̃(0)
nλ |~̂v|ψ

(0)
n̄ 〉|ψ(0)

nλ 〉, (141)

||χ(2)
n̄ 〉〉 =

∑
n6=n̄,λ

∑
n1 6=n̄,λ1

1
ω̂(0) − Λ(0)

n

1
ω̂(0) − Λ(0)

n1

× 〈ψ̃(0)
nλ |~̂v|ψ

(0)
n1λ1
〉〈ψ̃(0)

n1λ1
|~̂v|ψ(0)

n̄ 〉|ψ(0)
nλ 〉

− 〈ψ̃(0)
n̄ |~̂v|ψ(0)

n̄ 〉
∑
n6=n̄,λ

1
(ω̂(0) − Λ(0)

n )2
〈ψ̃(0)
nλ |~̂v|ψ

(0)
n̄ 〉|ψ(0)

nλ 〉. (142)

Equations (109)–(111) follow immediately from (134)–(136), by using (58), (69),
(70) and (141)–(142).
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