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Abstract

Fits are made to low-energy 9Be(γ, n)8Be cross-section data using one-level R-matrix formulae
including channel contributions. Fits with reasonable parameter values are found for the
newer radioactive-isotope data, and also for data obtained from inelastic electron scattering
on 9Be, but not for older radioactive-isotope data. This differs from the result of recent fits
using a semi-microscopic model, which supported the older data. The difference is attributed
to the use in the latter calculation of a single-particle potential description of the continuum
wave function.

1. Introduction

Efros et al. (1998) have pointed out the discrepancy between older and more
recent values of the low-energy 9Be(γ,n)8Be cross section that had been obtained
using radioactive-isotope gamma rays with energies below about 2 ·2 MeV. The
older values (Hamermesh and Kimball 1953; Gibbons et al. 1959; John and
Prosser 1962) are appreciably higher at energies above the 1 ·7 MeV resonance
peak than are those of Fujishiro et al. (1982), who were aware of the discrepancy
and discussed it thoroughly from an experimental viewpoint. Efros et al. say
that their semi-microscopic model calculations support the older data.

One-level R-matrix fits to the older data, together with the bremsstrahlung
data of Berman et al. (1967), had previously been made by Barker and Fitzpatrick
(1968), and to the newer data by Barker (1983). The same R-matrix formula
was used by Kuechler et al. (1987) to fit their 9Be(e, e′)9Be measurements, from
which they derived values of the 9Be(γ,n)8Be cross section at low energies. It is
not obvious, however, that standard R-matrix formulae are justified for reactions
involving photons, particularly if they have low energy, because contributions to
the collision matrix element can come from large distances. This was partially
allowed for in Barker (1984), where contributions to the radiative width coming
from the 8Be(g.s.) + n channel were considered. In addition to this resonant
contribution there are, however, also nonresonant channel contributions, which
change the form of the cross-section formula. This is seen in the R-matrix formulae
appropriate for radiative-capture reactions (and the inverse photodisintegration)
given by Barker and Kajino (1991). Here we use these formulae to fit the
9Be(γ,n)8Be cross-section data.
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2. Formulae

As is usual, we consider contributions to the 9Be(γ,n)8Be cross section σγn due
to E1 transitions from the 3

2
− ground state of 9Be to the 1

2
+ first excited state.

We make the one-level approximation in the formulae of Section 2 of Barker
and Kajino (1991), with the notation simplified by the omission of unnecessary
labels. The choice B` = S`(Er), where Er is the resonance energy, makes E1 =
Er. Sums over channels are restricted to the 8Be ground-state channel, labelled
g, and the first-excited-state channels, labelled by es, where s = 3

2 or 5
2 is the

channel spin. Then we have
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where

γγ = γγ(int) + γγ(ch) (3)
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Here Mn is the nucleon mass, and
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Also, we have

J1g(0, 1) = J ′′1 (0, 1) + i
F0(a)G0(a)

F 2
0 (a) +G2

0(a)
J ′1(0, 1) , (6)

with
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while
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. (9)

All of the integrals in equations (5)–(9) may be evaluated analytically and
expressed as functions of the energy E (in the 8Be + n c.m. system) and the
channel radius a, as may the penetration factor Pg and shift factors Sg and Se.

For a given value of a, the formula for σγn contains eight parameters; these are
Er, γg, θg and γγ(int), together with four connected with the 8Be excited-state
channels: γe 3

2
, γe 5

2
, θe 3

2
and θe 5

2
. Both the older and the newer sets of

radioactive-isotope data contain only six data points, so that not all of the eight
parameters can be determined by fitting them. We therefore use values of the
excited-state parameters obtained in other ways described below, and find that
the results are not sensitive to changes in these values.

The d-wave reduced-width amplitudes γes (for the 1
2

+ excited state of 9Be) and
the p-wave dimensionless reduced-width amplitudes θes (for the 3

2
− ground state

of 9Be) may be written in terms of spectroscopic amplitudes and single-particle
values:

γ = θ(h̄2/µa2) 1
2 , θ = S 1

2 θsp , (10)

where µ is the reduced mass, and

θsp = u(a)
[
a/2

∫ a

0

dr u2(r)
] 1

2

, (11)

with u(r)/r the single-particle radial wave function. We calculate u(r) for a central
Woods–Saxon potential with conventional values of the radius and diffuseness
parameters (1 ·25 and 0 ·65 fm), cut off at r = a, and with the depth adjusted
to fit the appropriate binding energy. For the conventional value of the channel
radius a = 1 ·45(A

1
3
1 + A

1
3
2 ) fm = 4 ·35 fm, this gives θe,sp( 1

2

+) = 0 ·524 and
θe,sp( 3

2

−) = 0 ·512 [the corresponding values for the ground-state channel are
θg,sp( 1

2

+) = −1 ·116 (` = 0)∗ and θg,sp( 3
2

−) = 0 ·629 (` = 1)].
Experimental values of the spectroscopic factors Sg and Se =

∑
s Ses are

available for the 3
2
− ground state of 9Be, obtained from one-neutron pickup

reactions. Eleven values of Sg were given in Table 1 of Barker (1984). Nine of
these measurements also give values of Se and six of these have the ratio Se/Sg
between 1 ·2 and 1 ·5. These values are consistent with the ratio given by shell

∗ We use the usual convention that u(r) is positive for small r; this is opposite to that used
for the 2s state in Barker (1984).
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model calculations: 1 ·25 (Cohen and Kurath 1967), 1 ·40 (Barker 1966) and 1 ·33
(Kumar 1974). We assume that the calculations also give reliably the absolute
values and the separate spectroscopic amplitudes for different channel spins, and
take those from Cohen and Kurath: S

1
2
g ( 3

2

−) = 0 ·762, S
1
2
e 3

2
( 3

2

−) = −0 ·622 and

S
1
2
e 5

2
( 3

2

−) = −0 ·582.

For the 1
2

+ state of 9Be, experimental values are not available and we have
to use shell model values of the spectroscopic amplitudes. Corresponding to the
value S

1
2
g ( 1

2

+) = 0 ·781 given in Barker (1984), one has S
1
2
e 3

2
( 1

2

+) = 0 ·477 and

S
1
2
e 5

2
( 1

2

+) = 0 ·363 (C. L. Woods, personal communication). Thus we take

γe 3
2

= 0 ·393 MeV
1
2 , γe 5

2
= 0 ·299 MeV

1
2 ,

θe 3
2

= −0 ·318, θe 5
2

= −0 ·298 , (12)

and might expect

γg = −1 ·369 MeV
1
2 , θg = 0 ·479 . (13)

Similarly an expected value of γγ(int) may be obtained. In Barker (1984), a value
aMif = 0 ·35 fm was used as representative of some shell model calculations.
From

γγ(int) = 8
27eN

1
2
f aMif , (14)

with Nf defined in equation (5), one finds (using Nf ≈ 1) an expected value

γγ(int) ≈ 0 ·124 MeV
1
2 fm

3
2 . (15)

Standard R-matrix formulae are obtained by taking γes = 0 and θg = 0.
The strength of the E1 gamma-transition is usually expressed as the energy-

independent reduced transition strength B(E1), defined by

Γγ =
16π
9
e2k3

γB(E1) ↓ (kγ = Eγ/h̄c) . (16)

We may write

Γγ = 2k3
γ |γγ |2 , (17)

suggesting

B(E1) ↓= 9
8π

1
e2 |γγ |

2 ; (18)

however, γγ is given by equation (3), where γγ(int) is real and energy-independent
but γγ(ch) is complex and energy-dependent.
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3. Fits and Results

We fit separately the six data points in the older radioactive-isotope set and the
six in the newer set, by adjusting the four parameters Er, γg, θg and γγ(int). We
similarly fit the 9Be(γ,n)8Be cross section given by Kuechler et al. (1987); they
obtained this by point-by-point extrapolation of four measured 9Be(e, e′) spectra
to the photon point and taking an error-weighted sum, with a consolidation of
data points to the 38 points shown in their Fig. 6. We assume the same energy
resolution of 30 keV for this cross section as for the original spectra.

Table 1. Parameter values for fits to 9Be(γ, n)8Be data

Data set Fit Er γg θg γγ(int) χ2 Ep Γ 1
2

B(E1) ↓
(keV) (MeV

1
2 ) (MeV

1
2 fm

3
2 ) (keV) (keV) (mb)

Older A 104 ·3 −1 ·007 0 ·0a 0 ·952 3 ·32 17 ·0 177 2 ·26
B 43 ·4 −0 ·575 −0 ·350 0 ·934 0 ·577 35 ·8 163 0 ·754
C 43 ·4 −0 ·564 −0 ·336 0 ·968 0 ·577
D −21 ·9 −19 ·4 0 ·643 0 ·124a 4 ·89 20 ·3 182 1723
E 43 ·6 −0 ·540 −0 ·333 0 ·934 0 ·572

Newer A 67 ·6 −0 ·694 0 ·0a 0 ·650 0 ·935 32 ·4 140 1 ·05
B 49 ·5 −0 ·599 −0 ·120 0 ·674 0 ·0967 33 ·4 117 0 ·796
C 49 ·5 −0 ·585 −0 ·116 0 ·715 0 ·0967
D 248 ·9 −1 ·345 0 ·351 0 ·124a 3 ·12 25 ·4 173 3 ·83
E 49 ·5 −0 ·560 −0 ·115 0 ·669 0 ·0967

Kuechler A 66 ·2 −0 ·778 0 ·0a 0 ·743 48 ·1 21 ·8b 135b 1 ·37
B 272 ·0 −1 ·550 0 ·411 0 ·035 43 ·8 18 ·8c 134c 5 ·68
C 306 ·1 −1 ·607 0 ·418 0 ·011 43 ·8
D 236 ·0 −1 ·450 0 ·379 0 ·124a 43 ·8 18 ·8c 134c 4 ·96
E 271 ·6 −1 ·452 0 ·394 0 ·003 43 ·8

A Best fit for standard formulae (γes = 0, θg = 0).
B Best fit with parameter values (12).
C Best fit with γes = θes = 0.
D Best fit with γγ(int) fixed at expected value.
E As for B, with a = 5 ·0 fm.
a Fixed value.
b Values for unsmeared cross section; for smeared cross section, Ep = 31 ·5 keV and Γ1/2 =
148 keV.
c Values for unsmeared cross section; for smeared cross section, Ep = 29 ·4 keV and Γ1/2 =
155 keV.

Table 1 gives values of the parameters and of the total χ2 for some of these
fits. For interest, we also give some values of the peak energy Ep, of the FWHM
of the peak Γ1/2, and of B(E1)↓, evaluated from equation (18) at Ep. Identical
fits are obtained if the signs of both γg and θg are changed, and the other
parameter values are unchanged. Approximately the same fits can be obtained
if the signs of both θg and γγ(int) are changed and the parameter values are
adjusted slightly. We list fits in which γg and γγ(int) have the signs expected
from the shell model calculations.

The rows labelled A in Table 1 are standard-formulae fits. In each case, γg
has a magnitude smaller than that expected from the shell model calculation
(−1 ·369 MeV 1

2 ), while γγ(int) is larger than the expected value (0 ·124 MeV 1
2

fm 3
2 ). Rows B are best fits with the formulae (1)–(9), with the excited-state
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channel parameters given in equation (12). The fits are not sensitive to these
parameter values, and the rows C are for all these parameters set equal to zero.

In these fits to the older and newer data sets with the revised R-matrix formulae,
θg has the opposite sign to the expected value (0 ·479), while γg is smaller in
magnitude than expected and γγ(int) larger. In contrast to the situation in Table 2
of Barker (1984), where the internal and channel contributions to the radiative
width added constructively, with the channel contribution dominating, these
present fits have a dominant internal contribution with the channel contribution
tending to cancel it. If γγ(int) is restricted to be near its expected value, as
in rows D, the fit to the older data gives Er < 0; such a fit is inadmissible, as
explained in Barker and Fitzpatrick (1968). The fit D to the newer data gives
reasonable parameter values, with a greatly increased but still acceptable value
of χ2.

The fits B and C to the data of Kuechler et al. give parameter values not far
from those expected, and essentially the same fit is obtained in row D.

The fits in the rows E correspond to those in rows B but with a larger channel
radius a = 5 ·0 fm.

The best fits A, B and D are shown in Figs 1a and 1b for the older and newer
radioactive-isotope data, and in Fig. 2 for the data of Kuechler et al.

4. Discussion and Summary

While some of the fits listed in Table 1 have unexpectedly small values of χ2,
all the fits may be regarded as acceptable as far as the χ2 values are concerned.
For the fits to the Kuechler et al. data, the χ2 values exceed the number of
degrees of freedom, but in each case more than one third of the total χ2 comes
from the four points below threshold (see Fig. 2), and these contributions are
sensitive to the energy calibration and resolution.

The standard-formulae fits (A) may be compared with previous fits. Direct
comparison with the Barker and Fitzpatrick (1968) fit to the older data is not
possible, because their fit was greatly influenced by the inclusion in the fitted data
of the bremsstrahlung measurements of Berman et al. (1967). With the Berman
data modified to allow for neutron energy loss in the target, as explained by
Barker and Fitzpatrick, the parameter values obtained there were not dissimilar
to those given in Table 1; for example, for B(E1)↓ equal to 2 ·0 mb, they obtained
Er = 90 ·1 keV and γg = −0 ·959 MeV 1

2 .
Fit A to the newer (Fujishiro et al.) data gives parameter and χ2 values

very close to those given in Barker (1983); the slight differences are due to the
different Q values used (1 ·6654 MeV here, 1 ·666 MeV previously).

The parameter values given in fit A to the Kuechler data differ considerably
from those of Kuechler et al. (1987), who gave ER = 1 ·684 MeV, corresponding
to Er = 19 keV, Γ = 217 keV, and B(E1) ↑ = 0 ·27 mb, corresponding to
B(E1) ↓ = 0 ·54 mb. These values of Er and B(E1) ↓ are much less than those
in Table 1. Also, it is not clear what their value of Γ represents, as the Γ
appearing in their formulae is energy-dependent; the parameter values in row A
of Table 1 give Γ(Er) = 280 keV and Γ(Ep) = 160 keV.

It is of some interest that the standard-formulae fits all give B(E1) ↓ ≥ 1 ·05
mb. As the Wigner unit for this transition is 2 ·79 mb, this gives B(E1) ↓ ≥
0 ·38 W.u. This is a very strong transition. Millener et al. (1983) found B(E1) ↓
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= 0 ·36±0 ·03 W.u. for the transition in 11Be from the 1
2
− first-excited state

to the 1
2

+ ground state, and pointed out that this is the strongest known E1
transition between bound nuclear levels.

Fig. 1. 9Be(γ, n)8Be cross section σγn as a function of γ energy Eγ . The experimental points
are for the older (crosses) and the newer (squares) radioactive-isotope data. The dashed, solid
and dotted curves are best fits corresponding to rows A, B and D respectively in Table 1.
Fits to the older data are shown in (a), and to the newer data in (b).

The best fits with R-matrix formulae including channel contributions (rows B,
C and E of Table 1) give χ2 smaller than for the standard formulae but, except
for the fits to the Kuechler data, the values of γg, θg and γγ(int) are not close to
the expected values (13) and (15). When γγ(int) is fixed at the expected value
(15) (rows D), the value of |γg| becomes unreasonably large for the fit to the
older data (as well as Er becoming negative, which makes the fit inadmissible),
whereas for the fits to the newer data and to the Kuechler data, both γg and
θg are close to the expected values (13). These fits give Er ≈ 240 keV, which is
not unreasonable, while Ep ≈ 20 keV and Γ1/2 ≈ 150 keV. They also give large
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values of B(E1) ↓≈ 1 ·5 W.u.; this is larger than the values calculated in Barker
(1984) (column A of Table 2), due mainly to the value of S

1
2
i used there (about

0 ·4 for a = 4 ·35 fm) being smaller than the value 0 ·781 used here in obtaining
(13).

Fig. 2. 9Be(γ, n)8Be cross section σγn as a function of γ energy Eγ . The experimental
points are from Kuechler et al. (1987), and the dashed and solid curves are fits corresponding
to rows A and B respectively in Table 1. The fit for row D is indistinguishable from that for
row B.

The difficulty in fitting the older data, in which σγn at higher energies is
appreciably greater than in the newer data, when the main contribution is
assumed to come from the channel region (fits D), is due to J ′′1 (0, 1), given by
equation (8), decreasing as E increases, so leading to smaller γγ(ch) at higher
energies and consequently smaller calculated values of γγn and σγn at higher
energies.

Our finding that reasonable parameter values can be obtained in fits to the
newer radioactive-isotope data, and to the data of Kuechler et al. (1987), but
not to the older data, is opposite to that of Efros et al. (1998). They say
that their analysis supports the older data. Although they found fits to the
newer data with acceptable χ2 values, they considered the values of the resultant
potential parameters to be unrealistic. Their potentials (12) give a 1

2
+ state of

9Be about 30 keV below the 8Be + n threshold, and such a state is not observed
experimentally; also, because the potentials are shallow, the calculated state is
0s, whereas it is more reasonable that a 1s state should exist near threshold, as
found for their potentials (10) and (11) obtained from fitting the older data.

We investigate why the results for the semi-microscopic model of Efros et
al. (1998) and the one-level R-matrix model used here are different. Efros et
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al. represented the 8Be + n s-wave continuum state by a single-particle wave
function for a central Woods–Saxon potential. They pointed out that the cross
section depends mainly (but not entirely) on the asymptotic wave functions, and
so on the low-energy s-wave phase shift, which is determined by the scattering
length as and effective range r0. Fig. 3 shows the dependence of as and r0 on
the potential depth V0 for a Woods–Saxon potential with conventional values of
the radius (2 ·50 fm) and diffuseness (0 ·65 fm). The potentials (10) and (11) of
Efros et al. fitting the older data and giving an unbound 1s state near threshold,
give as ≈ −28 fm and r0 ≈ 9 fm. These are close to the values obtained for V0 ≈
56 ·5 MeV in Fig. 3. On the other hand, the Efros et al. potentials (12), fitting
the newer data and giving a weakly-bound 0s state, give as ≈ 32 fm and r0 ≈ 3
fm, close to those for V0 ≈ 9 MeV in Fig. 3. One could obtain a weakly-bound
1s state with the same value of as for V0 ≈ 60 MeV, but r0 would be appreciably
larger, leading to a poor fit to the data.

Fig. 3. Scattering length as (solid lines) and effective range r0 (dashed lines) as functions
of potential depth V0, for a 8Be + n Woods–Saxon potential with conventional radius (2 ·50
fm) and diffuseness (0 ·65 fm).

Values of as and r0 can also be obtained from the parameter values in Table 1.
Neglecting contributions from the 8Be excited-state channels, one has (for Er ≥ 0)

as = (1− γ2
g/Er)a , (19)

r0 =
2

(γ2
g − Er)a

[
γ2
ga

2 − h̄2

2µ
− Er

(
h̄2

2µ
− Era

2

3

)/
(γ2
g − Er)

]
. (20)
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For Er < 0, one replaces Er in equations (19) and (20) by Er + Sg(Er)γ2
g . The

parameter values from fit D to the newer data give as = −27 ·3 fm and r0 =
2 ·2 fm. There is no depth V0 in Fig. 3 that gives values near these. The reason
appears to be that γ2

g is appreciably less than the single-particle value; the value
γg = −1 ·345 MeV 1

2 is close to the shell model value (−1 ·369 MeV 1
2 ) given in

equation (13), and this corresponds to a spectroscopic factor Sg( 1
2

+) = 0 ·7812

= 0 ·610. With Sg( 1
2

+) = 1, as assumed by Efros et al., γ2
g would be larger

and the first term in the square brackets in equation (20) would become more
dominant, leading to a larger value of r0 as suggested by Fig. 3.

It seems that fits to the older (newer) data require a large (small) value of
r0. With our small value of Sg( 1

2

+) we could not obtain a large value of r0 to
fit the older data without going to a bound 1s state; the parameters from fit D
to the older data give as = 37 ·0 fm and r0 = 7 ·7 fm. In contrast, fit D to the
Kuechler data gives as = −34 ·4 fm and r0 = 3 ·4 fm.

After the present paper was essentially complete, a paper based on the model
and results of Efros et al. (1998) appeared, in which properties of the first excited
states of 9Be and 9B were discussed (Efros and Bang 1999). This paper uses
various approximations that require some comment. It uses the single-particle
potential model for the s-wave continuum states, with the parameter values
found by Efros et al. (1998), and so assumes Sg( 1

2

+) = 1, in conflict with the
results of shell model calculations. For 9Be, it uses the Migdal–Watson form for
the lineshape or density-of-states function ρ(E) ∝ sin2δ/k; this involves several
approximations, which were discussed in Barker (1988). The same approach
but with fewer approximations led Hamburger and Cameron (1960) to the form
ρ(E) ∝ sin2β/P , where β = δ + φ, with −φ the hard-sphere phase shift and
P the penetration factor [this form for ρ(E) is identical with the one-level
R-matrix approximation]. For 9Be this reduces to the Migdal–Watson form if
φ is negligible compared with δ, i.e. a ¿ |as|, which is valid. For 9B, Efros
and Bang use ρ(E) ∝ sin2δ/kC2, where kC2 is just the K-matrix penetration
factor, or the R-matrix penetration factor calculated for zero channel radius.
In this case it is not at all obvious that φ can be neglected in comparison
with δ. Also kC2 increases with energy more rapidly than does P calculated
for a non-zero channel radius. Thus Efros and Bang, using ρ(E) ∝ sin2δ/kC2,
found a peak with a maximum at Emax = 1 ·13 MeV and FWHM = 1 ·64
MeV; for the same δ, and with φ and P calculated for a channel radius of
4 ·35 fm, the form ρ(E) ∝ sin2β/P gives Emax ≈ 1 ·5 MeV and FWHM ≈ 4 ·8
MeV.

In summary, the R-matrix model used here for the low-energy 9Be(γ, n)8Be
cross section finds acceptable fits with reasonable parameter values to the
newer radioactive-isotope data, as well as to the data of Kuechler et al.
(1987), but not to the older radioactive-isotope data. This is opposite to
the finding of Efros et al. (1998), whose calculations supported the older
data. The difference may be due to the assumption by Efros et al. of a
single-particle description of the 8Be + n s-wave scattering system, whereas
we have used a one-level approximation for the 1

2
+ state of 9Be, with a

shell model value for its spectroscopic factor that is appreciably smaller than
unity.
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