## Supplementary Material

## Maternal DDB1 regulates apoptosis and lineage differentiation in porcine preimplantation embryos

Biao Ding ${ }^{\mathrm{A}}$, Di Gao $^{\mathrm{B}}$, , Xuegu Wang $^{\mathrm{A}}$, Lei Liu ${ }^{\mathrm{A}}$, Junpei Sun ${ }^{\mathrm{A}}$, Meng Liang ${ }^{\mathrm{C}}$, Fengrui Wu ${ }^{\mathrm{D}}$, Yong Liu ${ }^{\mathrm{D}}$, Yunhai Zhang ${ }^{\mathrm{B}}$, Xiang $\mathrm{Li}^{\mathrm{A},{ }^{*}}$, and Wenyong $\mathrm{Li}^{\mathrm{D}, *}$
${ }^{\text {A Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, }}$ China.
${ }^{B}$ College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
${ }^{\text {CS }}$ School of Life Science, Bengbu Medical College, Bengbu 233030, China.
${ }^{\text {D }}$ Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China.
*Correspondence to: Xiang Li Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China Email: xiangli@bbmc.edu.cn; Wenyong Li Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China Email: liwenyong@fynu.edu.cn

## Supplementary figures

Figure S1
Fig.S1. Injection efficiency, survival rate and interference efficiency after siRNA injection. (a) Representative images of MII oocytes recovered 30 minutes after FAM-siRNA injection. BF: bright field. FAM: green fluorescence. Scale bar: $200 \mu \mathrm{~m}$. (b) The rate of MII oocytes with green fluorescence after FAM-siRNA injection and recovered 30 minutes (at least 10 oocytes per group; $\mathrm{n}=5$ ). (c) The survival rate of MII oocytes recovered 30 minutes after FAM-siRNA injection (at least 10 oocytes per group; $n=5$ ). (d) Interference efficiency of DDB1-siRNA1 at different concentrations (10 embryos per pool, n $=3)$. All data are presented as mean $\pm$ SEM and different letters on the column indicate significant differences ( $p<0.05$ ).


## Figure S2

Fig.S2. Effect of $D D B 1$ deletion on the in vitro development of embryos derived from PA. (a) Representative images of PA embryos at different developmental stages. Scale bar: $100 \mu \mathrm{~m}$. (b) Developmental rate of embryos at different stages. The number of survived oocytes after PA was regarded as the initial data and the embryos of all other stages were compared with it (at least 20 oocytes per group; $n=4)$. Data are presented as mean $\pm$ SEM, and the different letters indicate significant differences ( $p<0.05$ ). (c) Sectional fluorescence staining images of the $D D B 1-K D$ and the control. Nuclei (left panel, blue), CDX2 (middle panel, green), and the merged images between the DNA and CDX2 (right panel, cyan). Scale bar: $100 \mu \mathrm{~m}$. (d) Detection of the quality of the blastocysts by an analysis of the number of total cells, TE cells, ICM cells, and the ratio of the ICM to TE (at least 10 blastocysts per group; $\mathrm{n}=3$ ). Data are shown as mean $\pm$ SEM and the different letters indicate the significant differences $(p<0.05)$.


Figure S3
Fig.S3. Correlations of five biological replicates from each group. (a) The transcriptomes of four biological replicates from the NC group. (b) The transcriptomes of four biological replicates from the DDB1-KD group. R:

Pearson correlation coefficient.
(a)

(b)


## Supplementary tables

Table S1. Component of modified tris-buffered medium

| Components | $\mathrm{g} / 100 \mathrm{~mL}$ | Con. (mM) |
| :---: | :---: | :---: |
| NaCl | 0.6611 | 113.1 |
| KCl | 0.0224 | 3.0 |
| $\mathrm{CaCl}_{2}$ | 0.0833 | 7.5 |
| Tris | 0.2324 | 2.0 |
| $\mathrm{D}-$ Glucose | 0.1982 | 11.0 |
| Na-pyruvate | 0.0550 | 5.0 |

Table S2 Information on DDB1 siRNA sequences
No.
Sequence ( $5^{\prime}-3^{\prime}$ )

|  | Sense | Antisense |
| :--- | :--- | :---: |
| DDB1-siRNA1 | GCACAAUUGUGUGUCACAATT | UUGUGACACACAAUUGUGCTT |
| DDB1-siRNA2 | GCAUUGACUUACCAGGCAUTT | AUGCCUGGUAAGUCAAUGCTT |

Table S3. Primers used for RT-qPCR

| Gene symbol | Primer sequences (5'-3') | Product size <br> (bp) | Accession number |
| :---: | :---: | :---: | :---: |
| DDB1 | F: CTGTTGAGCGACCGTAAG |  |  |
|  |  | 199 | XM_003122651.6 |
|  | R: GATAGCCATCTGAGTTGAGG |  |  |
| YAP1(YAP) | F: TCAACCAAAGCACCCTACC |  |  |
|  |  | 121 | XM_021062706.1 |
|  | R: TCCTCTCCTTCTATGTTCATTCC |  |  |
| EZH1 | F: TGGCTCTGTGCTGATTAGTG |  |  |
|  |  | 81 | NM_001243206.1 |
|  | R: CCGTCCTCCTCCTCATCC |  |  |
| JAM3 | F: CCTGCTGCTGCTTCTACTG |  |  |
|  |  | 125 | XM_021063173.1 |
|  | R: TTGTCTGTGAATCCGTAATGATAC |  |  |
| PHF1 | F: CTGCTGTGTATGTCGCTCTG |  |  |
|  |  | 130 | XM_005665891.3 |
|  | R: TGTGCCCTCTCCCTCTCC |  |  |
| PPP1CB | F: ATGCTGGTGGAATGATGAGTG |  |  |
|  |  | 127 | NM_214184.2 |
|  | R: CGAGGTGGAGTGACAGGAC |  |  |
| BMP15 | F: СTCССTTCCACCTCTCCTG |  |  |
|  |  | 126 | NM_001005155.2 |
|  | R: CATCCATCTCCGTCCAAGC |  |  |
| KPNA7 | F: CACCAGCACATCCAGCAG | 109 | NM_001163411.1 |
|  | R: TAGCCACCGTCCACACTG |  |  |


| SH2B3 | F: ACCACTTCCAGCGTTCAC | 135 | XM_001929523.5 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | R: AGCGAGAGAGGGAGAAAGG |  |  |
| MAPK9 | F: AGAAGTAATGGATTGGGAAGAAAG | 107 | XM_005661441.3 |
|  |  |  |  |
|  | R: TGATAGATGACGACTGAGAAGG |  |  |
| CD3E | F: TTGCTGATGGTGGTGTATTAC | 141 | NM_214227.1 |
|  |  |  |  |
|  | R: GGGCTCATAGTCTGGATTGG |  |  |
| ANXA1 | F: AGTTGTTGTGAAGTGTGCTAC | 89 | NM_001163998.1 |
|  |  |  |  |
|  | R: TCTTATGACGAGTTCCATTACC |  |  |
| CSF1R | F: ACTCTGTGGTTGCCTTGC | 80 | XM_003124100.6 |
|  |  |  |  |
|  | R: TCTGTCTTGCTCTGCTCTTC |  |  |
| IL18 | F: GGCTCTCCACCTCCTCAC | 88 | XM_021085847.1 |
|  |  |  |  |
|  | R: TATCTTGTTGTTGCTATCATCTCC |  |  |
| PIWIL2 | F: GCATCAATCTCACTCTCACAAAG | 87 | NM_001194971.1 |
|  |  |  |  |
|  | R: GGCACAACTTCAGGCTATCC |  |  |
| FKBP6 | F: AACCGACCTACGCCTACG | 115 | XM_021086319.1 |
|  |  |  |  |
|  | R: AACTTGTCCGACTCAGCAG |  |  |
| ERBB4 | F: ACTCTTCAGCACCATCAACC | 150 | XM_021075968.1 |
|  |  |  |  |
|  | R: AAGCGACGACAGGACAGG |  |  |
| FRMD4B | F: GGAAAGATTTGAAGACACTACCC | 140 | XM_021069209.1 |
|  |  |  |  |
|  | R: ATACTGAACCACTGCTTGACC |  |  |
| DAB2 | F: GCACAGCCAGACCAATCG | 133 | XM_021076650.1 |
|  |  |  |  |
|  | R: GCCCAAAGTAATCAACATCCC |  |  |
| TCIRG1 | F: CTGGTGGTCCTGGCTCTG | 120 | XM_005660613.3 |
|  |  |  |  |
|  | R: AGTCTTGTCCTCATCCTCTACC |  |  |


| OCT4 | F: CGAGAACCGAGTGAGAGG |  |  |
| :---: | :---: | :---: | :---: |
|  |  | 206 | NM_001113060.1 |
| (POU5F1) | R: GGAAAGGAGACCCAGCAG |  |  |
|  | F: CGCAGACCTACATGAACG |  |  |
| SOX2 |  | 103 | NM_001123197.1 |
|  | R: TCGGACTTGACCACTGAG |  |  |
|  | F: AGTCGCTACATCACCATTCGGAG |  |  |
| CDX2 |  | 139 | NM_001278769.1 |
|  | R: GCTGCTGTTGCTGCAACTTCTTC |  |  |
| NANOG | F: СTCTCCTCTTCCTTCCTC | 139 | NM_001129971.1 |
|  | R: CTTCTGCTTCTTGACTGG |  |  |
|  | F: CATTACTCCTACCGCATCC |  |  |
| TEAD4 |  | 151 | NM_001142666.1 |
|  | R: CCTGTGTGTCTCTGTTGG |  |  |
|  | F: CACGACACGCTGGAGGAC |  |  |
| GATA3 |  | 106 | NM_001044567.1 |
|  | R: GGCTGGAGTGGCTGAAGG |  |  |
|  | F: CCAAGACAAAGGCGGTTTCC |  |  |
| H2AFZ |  | 94 | NM_001123122.1 |
|  | R: TGGCTGGTCGTCCTAGATTTC |  |  |

[^0]
[^0]:    $F$ : forward, $R$ : reverse

