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Context. Maternal-effect genes (MEGs) play a critical role in modulating both cellular and 
molecular biology events in preimplantation embryonic development. Damage-specific DNA  
binding protein 1 (DDB1) is a gene that participates in meiotic resumption, ovulation, and embryonic 
stem cell maintenance. Its function in preimplantation development is not well-studied. Aims. We 
aimed to explore the expression pattern, genomic heritage, and potential molecular mechanisms of 
DDB1 in preimplantation embryos in porcine. Methods. In this study, RNA interference, 
microinjection, RT-qPCR, immunofluorescence staining and single-cell RNA sequencing were used 
to explore the molecular function of DDB1 in porcine preimplantation embryos. Key results. 
DDB1 was found to be expressed in germinal vesicle (GV) and Meiosis II (MII) oocytes and in 
preimplantation embryos. We confirmed it is a MEG. DDB1-deficient blastocysts had a significantly 
reduced number of trophectoderm cells, an increased apoptotic cell number and increased 
apoptosis index. According to a next-generation sequencing (NGS) analysis, 236 genes (131 
upregulated and 105 downregulated) significantly changed in the DDB1-deficient morula. The 
myeloid leukaemia factor 1 (MLF1) and yes-associated protein 1 (YAP1) expressions were significantly 
upregulated and downregulated respectively, in the DDB1-deficient morula. In combination with the 
decreased expression of TEAD4, CDX2, GATA3, OCT4, and  NANOG and the increased expression of 
SOX2 in the blastocyst, DDB1 may play a role in determining lineage differentiation and pluripotency 
maintenance. Conclusions. DDB1 is a MEG and it plays a crucial role in porcine preimplantation 
embryonic development. Implications. This study provides a theoretical basis for further 
understanding the molecular mechanisms of preimplantation embryo development. 

Received: 21 February 2022 
Accepted: 26 May 2022 
Published: 21 June 2022 

Cite this: 
Ding B et al. (2022) 
Reproduction, Fertility and Development, 
34(12), 844–854. 
doi:10.1071/RD22028 

© 2022 The Author(s) (or their 
employer(s)). Published by 
CSIRO Publishing. 
This is an open access article distributed 
under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 
International License (CC BY-NC-ND). 

OPEN ACCESS 

Keywords: blastocyst, cellular apoptosis, DDB1, embryo, lineage differentiation, maternal-effect 
gene, porcine, preimplantation development. 

Introduction 

Mammalian early embryonic development is a precise and complex biological process that 
includes a series of morphological (e.g. cleavage or compaction), cytological (e.g. polarisation 
or lineage differentiation), and molecular biological (e.g. maternal regulation or epigenetic 
modification) events before implantation. These events are controlled by the accurate 
temporal and spatial expression of genes (Hamatani et al. 2004; Wang et al. 2021). 
Maternal-effect genes (MEGs) are maternal origin genes that play a critical role in 
modulating early embryonic development such as embryonic genome, cleavage, and 
embryonic cell lineage establishment (Li et al. 2010; Zhang and Smith 2015). An 
impairment in the expression of MEGs can lead to abnormal embryo development, 
impairing cleavage or compaction (Wu et al. 2003; de Vries et al. 2004; Xu et al. 2015), 
blastocyst formation (Kim et al. 2016; Cao et al. 2019), and trophectoderm (TE) and inner 
cell mass (ICM) differentiation (Wu et al. 2010; Cockburn et al. 2013). 

TE and ICM are the major components of a blastocyst and they are both formed in the 
blastocyst after the first lineage differentiation. TE is a type of squamous epithelium derived 
from the polar cells produced by an asymmetric division during the 8-cell to the morula stage 
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(Saini and Yamanaka 2018). It is located on the outer edge of 
the embryo and mediates implantation and placentation 
(Maître 2017). Several MEGs play a critical role in the 
formation and differentiation of TE cells. For example, 
maternal E-cadherin-deficient embryos can have a delayed 
cell division (de Vries et al. 2004) and  an  E-cadherin null 
mutant embryo failed to form an intact TE cell (Larue et al. 
1994). ICM takes an inner position within the embryo, which 
develops the fetus and the extra-embryonic yolk sac (Saini 
and Yamanaka 2018). During mammalian embryonic 
development, it is well-known that the Hippo/YAP signalling 
cascade plays a central role in the TE/ICM lineage 
specification (Chazaud and Yamanaka 2016). 

Damage-specific DNA binding protein 1 (DDB1) is one of 
the subunits of the damaged DNA binding protein complex 
that is involved in the nucleotide excision repair pathway 
(the other component is DDB2) (Chu and Yang 2008). 
DDB1 is an adapter  protein between Cullin 4A (CUL4A) 
and CUL4-associated factors (DCAFs) that acts as a 
component of the CUL4A-RING ubiquitin E3 ligases 
(CRL4) complex to target substrates for ubiquitination 
(Iovine et al. 2011). DDB1 is required for meiotic resump-
tion and meiosis I progression in mice oocytes (Yu et al. 
2015a). Oocyte-specific Ddb1 knockout mice demonstrated 
oocyte loss and female infertility due to increased 
apoptosis and poor responses to ovulation signals of the 
granulosa cells (Yu et al. 2013, 2015b). The deletion of 
maternal DDB1 in oocytes contributes to embryonic deaths 
before the 8-cell stage (Yu et al. 2013). Although Ddb1 has 
been reported to be a MEG in mice, with a role in oocyte 
meiosis maturation, whether it is a conservative MEG 
among species – as well as its function in preimplantation 
embryonic development of other species – is still unknown. 

In this study, we identified DDB1 as a MEG during porcine 
preimplantation embryonic development. We further explored 
the dynamic expression pattern of DDB1 in porcine oocytes 
and preimplantation embryos. In addition to this novel 
finding, we also assessed the molecular function of DDB1 
using RNA interference and RNA-seq analysis methods. Our 
work provides evidence supporting the critical role of DDB1 
in cellular apoptosis, lineage differentiation, and the pluripo-
tency maintenance of blastocyst formations in porcine models. 

Materials and methods 

All chemicals were purchased from Sigma-Aldrich (Shanghai, 
China) unless specific statement. 

Porcine oocytes collection and in vitro 
maturation (IVM) 

Porcine ovaries were collected from a local slaughterhouse 
and transported into the lab for processing within 2 h of 
collection. The cumulus-oocyte complexes (COCs) with 

3–6 mm diameter were used for maturation culture. Briefly, 
the COCs were randomly placed in four-well Petri dishes. 
Eighty oocytes were cultured in 400 μL IVM medium 
[Medium-199 supplemented with 10% fetal bovine serum, 
10% porcine follicular fluid, 10 ng/mL epidermal growth 
factors, 10 IU/mL equine chorionic gonadotropin, 10 IU/mL 
human chorionic gonadotropin, 0.1 mg/mL L-Cysteine (Ding 
et al. 2017)] per well, and covered with mineral oil. After 
42–44 h culture (38.5°C, 5% CO2, saturated humidity), the 
cumulus cells were removed using 1 mg/mL hyaluronidase. 
The oocytes with normal morphology and first polar body 
(pb1) were identified as mature oocytes and used for the 
subsequent experiments. The subsequent experiments were 
replicated at least three times. 

Matured oocytes parthenogenetic activation (PA), 
in vitro fertilisation (IVF), and embryo culture 

The matured oocytes PA, IVF and embryo culture were 
performed as previous described (Ding et al. 2017). Briefly, 
matured oocytes (metaphase II stage, MII) were activated 
with a single direct current pulse of 1.56 kV/cm for 80 μs 
in activation medium (0.3 M mannitol supplemented with 
0.1 mM CaCl2, 0.1 mM MgCl2, and 0.01% polyvinyl alcohol) 
using cell fusion apparatus (CF-150B, BLS, Hungary). Then, 
the oocytes were further incubated with assisting activation 
medium [porcine zygote medium 3 (PZM-3 was prepared as 
previous described (Yoshioka et al. 2002)) supplemented 
with 10 μg/mL cycloheximide and 10 μg/mL Cytochalasin 
B] for 4 h at 38.5°C with 5% CO2 and saturated humidity. 

For the  IVF,  fresh Duroc  boar  semen was  collected from  a  
local pig breeding farm (Hefei Antai, China) and transported 
into the lab for processing within 2 h of collection. A 
fertilisation medium droplet (55 μL) was made by adding 
5.5 μL of resuspended fresh boar sperm solution (1 × 
106 cells/mL) into 49.5 μL fertilisation medium (modified 
tris-buffered medium (components are listed in Supplementary 
Table S1) plus 2 mg/mL BSA and 2 mM caffeine). A total of 15 
MII oocytes were co-incubated with sperm in the fertilisation 
droplet for 6 h in the incubator (38.5°C, 5% CO2, saturated 
humidity). After washing out the surrounding sperm, the 
presumptive zygotes were processed into embryo culture. A 
pool of 15 zygotes were cultured in one 50 μL PZM-3 droplet, 
covered with mineral oil and placed in the incubator (38.5°C 
with 5% CO2 and saturated humidity). The cultured embryos 
were assessed and collected at the following hours: pronucleus 
(PN, 16 h); 2-cell (2C, 32 h); 4-cell (4C, 44 h); 8-cell (8C, 82 h); 
morula (MO, 104 h); blastocyst-day 5 (BL, 120 h); blastocyst-
day 6 (BL, 144 h); blastocyst-day 7 (BL, 168 h). 

Inhibition of zygote transcripts synthesis 

The embryos were treated with 25 μg/mL α-amanitin (RNA 
polymerase II inhibitor) for 30 min at the 2C, 4C, and 8C 
stages. The embryos in the control groups were treated with 
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solvent (dimethylsulfoxide). 2C embryos from treatment and 
control groups were washed with PZM-3 three times and 
cultured and then were collected at 4C for RT-qPCR. 4C 
embryos from treatment and control groups were washed 
with PZM-3 three times and cultured and then collected at 
8C for RT-qPCR. 8C embryos from treatment and control 
groups were washed with PZM-3 three times and cultured 
and then collected at MO for RT-qPCR. All experiments 
were replicated three times. 

Knockdown of the target gene 

DDB1 expression was knocked down in MII oocytes by 
cytoplasm microinjecting two small interfering RNA species 
(siRNA sequences are listed in Table S2). A non-specific 
siRNA was used as a negative control (GenePharma, 
Shanghai, China). Briefly, MII oocytes were placed in an 
operating medium (TCM199 with 2% fetal bovine serum 
and 7.5 μg/mL Cytochalasin B), and ~10 pL of the siRNA 
solution (25 μM) was cytoplasm microinjected per cell with 
a micromanipulator system (Olympus, Japan). After 30 min 
of recovery in PZM-3 media, the oocytes were processed 
into PA or IVF. FAM-siRNA (green fluorescence) was used 
to validate injection efficiency. Recovered oocytes with 
tightness, margin smooth and good refraction of cytoplasm 
were considered survival (Fig. S1a). The non-treated 
(control), RNase-free water injection (sham water), and 
non-specific siRNA injection (NC-siRNA) groups were set as 
controls. There were more than 20 oocytes per group and 
the experiment was replicated three times. 

Real-time quantitative PCR (q-PCR) 

More than 20 oocytes and 10 embryos were used for total RNA 
extraction (74034, Qiagen, Germany). After that, total RNA 
was used for reverse transcription (205311, Qiagen, Germany). 
Quantitative real time PCR (StepOnePlus, Applied Biosystems, 
USA) was used to measure target gene expression. The 
amplification reaction consisted of template denaturation 
and polymerase activation at 95°C for 10 min, followed by 
40 cycles of denaturation at 95°C for 15 s, annealing at 60°C 
for 60 s. and 72°C extension for 30 s. The genes expression 
level was normalised against H2AFZ (Lee et al. 2017) and  
presented as relative fold change to the controls (n = 3). 
Three independent experiments and qPCR reactions were 
performed. All primers are listed in Table S3. 

Terminal deoxynucleotidyl transferase-mediated 
nick-end labelling (TUNEL) staining 

Blastocyst apoptotic cells were stained using an In Situ 
Cell Death Detection Kit (12156792910, Roche, USA). 
Briefly, blastocyst (day 7) embryos were fixed with 4% 
paraformaldehyde for 15 min and permeabilised with 1% 
Triton X-100 for 30 min. After that, the blastocyst embryos 

were incubated with TUNEL reaction solution for 1 h at 
37°C, then with 10 μg/mL Hoechst 33342 for 15 min. 
Finally, the apoptotic cells were imaged using an inverted 
fluorescence microscope (Olympus, Japan) and quantified 
with Image J software (ImageJ 1.52a, NIH, USA). Five 
blastocysts were quantified in each group, and the experiment 
was replicated three times. 

Immunofluorescence staining 

CDX2 protein was stained for immunofluorescence as 
previously described (Ding et al. 2017; Gao et al. 2020). 
Briefly, blastocyst (day 7) embryos were fixed (4% 
paraformaldehyde, 15 min) and permeabilised (1% Triton 
X-100, 30 min), then blocked (2% BSA, 2 h, RT). The 
embryos were then followed by incubating with anti-CDX2 
antibody (CDX2, AM392, Biogenex, USA) overnight at 4°C. 
After washing, the embryos were incubated with secondary 
antibody (1:200, goat anti-mouse IgG, Alexa Fluor 488, 
A11029, Invitrogen, USA) for 2 h at 37°C. After being 
counterstained with propidium iodide or 4,6-diamidino-2-
phenylindole dihydrochloride for 10 min, the stained 
embryos were imaged using an inverted fluorescence 
microscope (Olympus, Japan) and quantified using Image J 
software (ImageJ 1.52a, NIH, USA). 

RNA sequencing and bioinformatic analyses 

The non-specific siRNA injected (NC) and DDB1-siRNA 
injected (DDB1-KD) porcine morulae were collected for 
RNA sequencing (five morulae per group, n = 3). Briefly, 
the morulae RNA was extracted (TRK1001, LC Science, 
Houston, TX) and the cDNA library was constructed (TruSeq 
Nano DNA LT Library Preparation Kit, FC-121-4001, Illumina, 
USA). Then the cDNA was fragmented by dsDNA Fragmentase 
(NEB, M0348S, USA) and paired-end sequencing was 
performed on an Illumina Novaseq™ 6000 (LC-bio, China) 
using Illumina paired-end RNA-seq approach. A total of 
57 G bp of cleaned, paired-end reads were produced and 
mapped to the Sus scrofa reference genome. StringTie was 
used to determine mRNA expression levels by calculating 
the fragments per kilobase of exon model per million 
mapped fragments (FPKM). The differentially expressed 
genes were screened with log2 fold change > 1 or log2 

fold change < −1 and with a statistical significance 
(P-value < 0.05) by the R package. Gene ontology (GO) 
analysis was performed using http://geneontology.org. 

Statistical analysis 

At least three replicates were performed for all experiments. 
The statistical analyses were performed using a student’s t-test 
or a one-way ANOVA (SPSS 17.0, USA). The graphs were 
constructed by GraphPad Prism (GraphPad software 5.01, 
USA). A P value of < 0.05 was considered to be statistically 
significant. 
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Results 

Expression pattern of DDB1 in porcine oocytes 
and preimplantation embryos 

The mRNA expression levels of DDB1 in oocytes 
and preimplantation embryos were measured by RT-qPCR. 
The expression level of the DDB1 transcript level was 
highest in oocyte at the GV stage and was significantly 
higher than the MII stage and embryos in different 
developmental stage (Fig. 1a). After fertilisation, the DDB1 
mRNA abundance peaked at the stage of 2C, followed by 
4C, PN, MO, BL, and was lowest in 8C (Fig. 1a). 

Verification of the heritage of the transcripts and 
the RNA interference efficiency 

Porcine zygotic genome activation occurs at the 4-cell 
stage (Cao et al. 2014). α-amanitin, an inhibitor of RNA 
polymerase II, has been commonly used to block zygote 
mRNA synthesis during preimplantation stage (Uh and 
Lee 2017). We treated the 2C, 4C, and 8C embryos with 
α-amanitin to inhibit zygote mRNA produce. The DDB1 
mRNA expression level did not change between the treat-
ment and the control groups (Fig. 1b), suggesting that DDB1 
is one of the maternal origin transcripts in porcine early 
embryos. 

We designed two siRNA species (DDB1-siRNA1, D1; DDB1-
siRNA2, D2) to target the porcine DDB1 sequence for the 
DDB1 knockdown. 25 μM siRNA was determined to be the 
most appropriate concentration (Fig. S1d). As shown in 
Fig. 1c, the endogenous DDB1 mRNA was significantly 
reduced in the 4C embryos (D1, 78.21%; D2, 79.65%; 
D1 + D2, 84.49%) and the 8C embryos (D1, 80.43%; 
D2, 81.58%; D1 + D2, 91.46%). A DDB1-siRNA cocktail 
was used for the subsequent knockdown experiments. The 
injection efficiency of FAM-siRNA was 97.75% and survival 
rate of MII oocytes after injection was 95.75% (Fig. S1b, c). 

DDB1-deficient porcine embryo has an impaired 
developmental competence 

We knocked down DDB1 in IVF embryos to explore the effect 
of DDB1 on preimplantation development. As can be seen in 
Fig. 2a, b, the DDB1-deficient IVF embryos had an impaired 
development ability as the ratios of 8C, MO, and BL were 
all significantly lower than the controls. The DDB1-
deficient blastocysts had a significantly decreased total cell 
number and TE cell number (Fig. 2c, d). Although the 
DDB1-deficient embryos had no change in ICM cell 
population, the ICM/TE significantly increased compared 
with the controls (Fig. 2d). Similar results were detected in 
the DDB1-deficient PA embryos (Fig. S2). 

DDB1 ablation induces apoptosis in the 
blastocysts 

Due to the decreased number of TE cells in the DDB1-deficient 
blastocysts, TUNEL staining was applied to establish whether 
DDB1 ablation caused cell apoptosis. As shown in Fig. 3, there 
was a greater number of apoptotic cells and a higher apoptotic 
index in the DDB1-deficient blastocysts relative to the 
control group. 

DDB1-deficient morula embryos have a different 
gene expression profile 

An RNA-seq analysis was used for exploring the molecular 
difference in the DBB1-deficient embryos (Fig. 4a). All five 
replicates in the same group had a high correlation (DDB1-KD 
groups, R = 0.81~0.96; NC groups, R = 0.88~0.97) 
(Fig. S3a, b). 

Our result demonstrated that 236 DEGs accounted for 
the transcriptome changes between the DDB1-deficient 
and control groups. There were 131 upregulated and 
105 downregulated genes in the DDB1-deficient morula 
(Fig. 4b, d). 

A total of 19 differentially expressed genes (DEGs) (FC > 2 
or <0.5, P < 0.05) were validated by RT-qPCR (UP: EZH1, 
JAM3, PHF1, PPP1CB, BMP15, KPNA7, MAPK9, CD3E, 
PIWIL2, FKBP6; DOWN: YAP1 (also known as YAP), SH2B3, 
ANXA1, CSF1R, IL1B, ERBB4, FRMD4B, DAB2, TCIRG1) 
(Fig. 4c) and their expression patterns were consistent with 
the RNA-seq result. 

A gene ontology (GO) analysis was performed on the DEGs 
and three function categories (the biological process, cellular 
component, and molecular function) were used for the 
classification (Fig. 4e). Several blastocyst genesis key genes 
were found to be enriched in the biological process such as 
YAP1 (Cao et al. 2019), JAM3 (Su et al. 2012), KPNA7 
(Tejomurtula et al. 2009), and PIWIL2 (Roovers et al. 2015). 

Knockdown of DDB1 affects the Hippo signalling 
pathway 

The Hippo signalling pathway plays an essential role 
in the establishment of TE-specific features (Saini and 
Yamanaka 2018). Our results demonstrated a significantly 
downregulated YAP1 in the DDB1-deficient morula (Fig. 
4c). The expression level of TEAD4, CDX2, and GATA3 – 
the downstream effectors of YAP – were all significantly 
decreased in the DDB1-deficient blastocysts compared to 
the control groups (Fig. 5a). Immunofluorescent staining 
confirmed the reduced protein CDX2 level in the DDB1-
deficient blastocysts (Fig. 5b, c). The expression of the 
ICM-specific genes OCT4 and NANOG decreased, while 
SOX2 increased in the DDB1-deficient blastocysts (Fig. 5a). 
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Fig. 1. Characterisation of DDB1 in porcine oocytes and preimplantation embryos. (a) DDB1 mRNA was 
analysed in oocytes and preimplantation embryos by RT-qPCR at different developmental stages (at least 20 
oocytes and 10 embryos per pool, n = 3). (b) Relative abundance of DDB1 mRNA in 4C, 8C, and MO 
embryos derived from α-amanitin treated 2C, 4C, and 8C embryos, respectively, determined by RT-qPCR 
(10 embryos per pool, n = 3). (c) RT-qPCR analysis of DDB1 mRNA levels in non-injected (control), RNase-
free water injection (sham water), negative control siRNA (NC-siRNA), and DDB1-siRNA injected 4C or 8C 
embryos (10 embryos per pool, n = 3). D1 and D2 correspond to two different DDB1 siRNA sequences; 
D1 + D2, cocktail of D1 and D2 (1:1). All data are presented as mean ± s.e.m. and different letters on the 
column indicate significant differences (P < 0.05). 

Discussion 2015). In this study, we demonstrated that DDB1 was a 
transcript of maternal origin in the porcine model and was 

DDB1 is a multifunctional gene and plays a role in embryonic 
stem cell differentiation, oocyte maturation, and early 
embryonic development (Yu et al. 2013, 2015a; Gao et al. 

consistently expressed in the oocytes and embryos. Our 
generated DDB1-deficient embryos showed an impaired 8C, 
MO, and BL ratio as well as a significantly decreased TE 
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Fig. 2. Effect of DDB1 knockdown on in vitro development of embryos derived from IVF. (a) Representative brightfield images of embryos 
at different developmental stages. Scale bar: 100 μm. (b) Developmental rate of embryos at different stages. The number of 2C embryos was 
regarded as the initial data and the embryos of all other stages were compared to it (at least 20 oocytes per treatment, n = 4). Data are 
shown as mean ± s.e.m. and different letters indicate significant difference (P < 0.05). (c) Representative fluorescence staining images of 
DDB1 knockdown and the control. Nuclei (left panel, red), CDX2 (middle panel, green), and merged images between the DNA and CDX2 
(right panel). Scale bar: 100 μm. (d) Detection of the quality of blastocysts by an analysis of the number of total cells, TE cells, ICM cells, and 
the ratio of ICM to TE (at least eight blastocysts per group, n = 3). Data are presented as mean ± s.e.m. and different letters indicate 
significant difference (P < 0.05). 

population associated with increased apoptotic cells in 
blastocysts. The RNA-seq analysis showed a changed gene 
expression profile in the DDB1-deficient embryos indicating 
that DDB1 could regulate porcine embryo development 
by modulating the differentiation of the embryonic cell 
lineages and pluripotency. Our work highlights the critical 
function of DDB1 in porcine embryonic development, 
which is of benefit to embryonic development-related 
research. 

MEGs are not all highly conserved among mammal species. 
For example, Linker histone H1FOO as a maternal gene is 
essential for the morula–blastocyst transition in bovine 
early embryonic development (Li et al. 2021); however, the 
knockdown of H1foo did not affect the preimplantation 
development to the blastocyst stage for mice (Funaya et al. 
2018). Ddb1 was first reported in mice, which is a maternal 
factor required for zygotic genome activation, and a Ddb1-
deficient embryo died before the 8-cell stage (Yu et al. 2013). 
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The expression pattern of Ddb1 in mice oocytes and embryos 
was unclear. In this study, we reported the expression pattern 
of DDB1 in porcine oocytes and embryos. A DDB1-deficient 
porcine embryo could develop to the blastocyst stage but 
the quality of the resultant blastocyst was poor. These 
results suggested that the function of maternal DDB1 was 
less conserved in preimplantation embryonic development 
between the mouse and porcine models. 

Apoptosis is a critical factor that correlated with 
embryo developmental arrest in bovine and porcine studies 
(Mateusen et al. 2005; Antunes et al. 2010). In our study, 
we found that DDB1 depletion stimulated apoptosis in the 
developing porcine embryos. DDB1 takes part in the 
nucleotide excision repair pathway (Chu and Yang 2008). 
The loss of DDB1 led to transcriptional p53 pathway 
activation, cell cycle deregulation, and an increase in 
apoptosis in zebrafish embryos (Hu et al. 2015). The 
deletion of DDB1 in hematopoietic stem cells has been 
shown to induce p53 pathway activation leading to DNA 
damage and rapid apoptosis (Gao et al. 2015). Our RNA-seq 
result showed that myeloid leukaemia factor 1 (MLF1) was 
upregulated in the DDB1-KD morula (Fig. 4d). MLF1 is a 
negative regulator of cell cycle progression functioning 
upstream of the p53, which induced p53-dependent cell 
cycle arrest in mice embryonic fibroblasts (Yoneda-Kato 
et al. 2005). Overexpressed MLF1 has been shown to 
increase apoptosis in neonatal rat cardiomyocytes (Rangrez 
et al. 2017). Therefore, MLF1 may be a potential regulator 
of increased cellular apoptosis in DDB1-deficient porcine 
embryos, however further work is required. 

Fig. 3. Effect of DDB1 deficiency on cell 
apoptosis in blastocysts. (a) Apoptosis of 
blastocysts was detected by TUNEL staining 
and representative images of the DDB1-KD 
groups and the control groups are shown. 
DNA (top panel, blue), TUNEL (middle panel, 
red), merged images between the DNA and 
TUNEL (bottom panel). Scale bar: 100 μm. 
(b) The number of TUNEL positive cells was 
statistically analysed in the DDB1-KD and 
control groups, respectively (at least 10 
blastocysts per group, n = 3). (c) The 
apoptotic index (ratio of apoptotic cells to 
total cells) was statistically analysed in the 
DDB1-KD and control groups. Data are 
presented as the mean ± s.e.m. and the 
different letters indicate significant difference 
(P < 0.05). 

The morula is a pivotal period for blastocyst formation, 
controlled by a significant amount of differentially expressed 
genes between the morula and blastocyst stage (Hsu et al. 
2012). In this study, the most changed genes in the DDB1-
deficient morula were found to be associated with signal 
transduction, cell adhesion, and stem cell differentiation 
including YAP1 (also known as YAP). The Hippo/YAP 
signalling cascade is central to cell fate specification processes 
indicating a TE/ICM lineage specification (Sasaki 2015; 
Chazaud and Yamanaka 2016). In mice, the polarisation of 
the outer cells promoted YAP nuclear localisation through the 
regulation of the Hippo signalling pathway (Nishioka et al. 
2009; Saini and Yamanaka 2018). Non-phosphorylated YAP 
entered the nucleus and interacted with TEAD4 to promote 
the expression of downstream genes such as CDX2 and 
GATA3, which are related to trophoblast differentiation 
(Ralston et al. 2010). The formation of the TE lineage 
depends on the transcription factor CDX2. The deletion of 
CDX2 has been shown to result in a failure to form TE and 
impair the TE function (Strumpf et al. 2005; Goissis and 
Cibelli 2014; Bou et al. 2017; Liu et al. 2018). Our result 
showed downregulated gene and protein levels of CDX2 and 
GATA3 and significantly reduced TE population, indicating 
that CDX2-mediated TE was reduced in the DDB1-deficient 
porcine embryos. 

Pluripotency is one property for ICM cells that generates all 
somatic lineages and germlines (Nichols and Smith 2012). 
OCT4, NANOG, and SOX2 are key transcription factors that 
maintain the pluripotency of ICM cells (Boyer et al. 2005). 
OCT4 and NANOG are highly expressed in embryonic stem 
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Fig. 4. Transcriptome analysis of the morula embryos deficient of DDB1. (a) Schematic design of the morula selected for RNA-seq (three 
morulae per group, n = 5). (b) Volcano plot showing all DEGs between the DDB1-KD and NC groups. (c) Validation of selected 
downregulated (top panel) and upregulated genes (bottom panel) in the DDB1-KD and the control groups by RT-qPCR (10 morulae 
per pool, n = 3). Data are shown as mean ± s.e.m. and the different letters indicate significant difference (P < 0.05). (d) Heatmaps 
showing partial DEGs at the morula between the DDB1-KD and NC groups (P < 0.05, log2 fold change > 0.8 or < −0.8). (e) GO  
analysis exhibiting the most enriched functional categories by the DEGs. 
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Fig. 5. DDB1 deficiency disturbs the expression of pluripotency and the differentiation of 
associated genes in the blastocysts. (a) RT-qPCR analysis of the pluripotency and 
differentiation-associated gene mRNA abundance in the NC and DDB1-KD groups (five 
blastocysts per pool, n = 3). Data are shown as mean ± s.e.m. and the different letters 
indicate significant difference (P < 0.05). (b) Representative fluorescence staining images of the 
nuclei and CDX2 protein. Nuclei (left panel, blue), CDX2 (middle panel, green), and merged 
images between the DNA and CDX2 (right panel). Scale bar: 100 μm. (c) The average values 
of the fluorescence intensities of CDX2 were assessed in the NC and DDB1-KD groups by 
densitometry (at least five blastocysts per treatment; n = 3 replicates). **P < 0.01. 

cells (ESCs) and have been shown to trigger differentiation 
when repressed (Pan and Thomson 2007; Shi and Jin 2010). 
In contrast, an increase in SOX2 can induce the differentiation 
of ESCs (Kopp et al. 2008). Our results showed a decreased 
OCT4 and NANOG and an increased SOX2 expression in 
the DDB1-deficient blastocysts (Fig. 5a), suggesting an 
essential role of DDB1 in ICM pluripotency maintenance. 

In conclusion, our study demonstrated the maternal 
origin of DDB1 in a porcine model. A lack of DDB1 
enhanced cellular apoptosis and impaired TE formation 
and pluripotency maintenance in porcine blastocysts. The 
decreased expression of CDX2 was the potential molecular 
mechanism of the decreased TE population in DDB1-deficient 
porcine blastocysts. Further studies are required to explore 
the function of DDB1 in embryonic development. 

Supplementary material 

Supplementary material is available online. 
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