Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
REVIEW (Open Access)

An overview of the history, current contributions and future outlook of iNaturalist in Australia

Thomas Mesaglio https://orcid.org/0000-0002-1096-6066 A C and Corey T. Callaghan https://orcid.org/0000-0003-0415-2709 A B
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia.

B Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia.

C Corresponding author. Email: thomasmesaglio@gmail.com

Wildlife Research 48(4) 289-303 https://doi.org/10.1071/WR20154
Submitted: 3 September 2020  Accepted: 16 January 2021   Published: 19 March 2021

Journal Compilation © CSIRO 2021 Open Access CC BY-NC

Abstract

Citizen science initiatives and the data they produce are increasingly common in ecology, conservation and biodiversity monitoring. Although the quality of citizen science data has historically been questioned, biases can be detected and corrected for, allowing these data to become comparable in quality to professionally collected data. Consequently, citizen science is increasingly being integrated with professional science, allowing the collection of data at unprecedented spatial and temporal scales. iNaturalist is one of the most popular biodiversity citizen science platforms globally, with more than 1.4 million users having contributed over 54 million observations. Australia is the top contributing nation in the southern hemisphere, and in the top four contributing nations globally, with over 1.6 million observations of over 36 000 identified species contributed by almost 27 000 users. Despite the platform’s success, there are few holistic syntheses of contributions to iNaturalist, especially for Australia. Here, we outline the history of iNaturalist from an Australian perspective, and summarise, taxonomically, temporally and spatially, Australian biodiversity data contributed to the platform. We conclude by discussing important future directions to maximise the usefulness of these data for ecological research, conservation and policy.

Keywords: citizen science, iNaturalist, biodiversity data, conservation, community science.


References

Aceves‐Bueno, E., Adeleye, A. S., Feraud, M., Huang, Y., Tao, M., Yang, Y., and Anderson, S. E. (2017). The accuracy of citizen science data: a quantitative review. Bulletin of the Ecological Society of America 98, 278–290.
The accuracy of citizen science data: a quantitative review.Crossref | GoogleScholarGoogle Scholar |

Agarwal, M. (2017). First record of Dendronotus orientalis (Baba, 1932) (Nudibranchia: Dendronotidae) in the temperate eastern Pacific. BioInvasions Records 6, 135–138.
First record of Dendronotus orientalis (Baba, 1932) (Nudibranchia: Dendronotidae) in the temperate eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Azevedo-Santos, V. M., Fearnside, P. M., Oliveira, C. S., Padial, A. A., Pelicice, F. M., Lima, D. P., Simberloff, D., Lovejoy, T. E., Magalhaes, A. L., Orsi, M. L., and Agostinho, A. A. (2017). Removing the abyss between conservation science and policy decisions in Brazil. Biodiversity and Conservation 26, 1745–1752.
Removing the abyss between conservation science and policy decisions in Brazil.Crossref | GoogleScholarGoogle Scholar |

Barve, V. V., Brenskelle, L., Li, D., Stucky, B. J., Barve, N. V., Hantak, M. M., McLean, B. S., Paluh, D. J., Oswald, J. A., Belitz, M. W., and Folk, R. A. (2020). Methods for broad‐scale plant phenology assessments using citizen scientists’ photographs. Applications in Plant Sciences 8, e11315.
Methods for broad‐scale plant phenology assessments using citizen scientists’ photographs.Crossref | GoogleScholarGoogle Scholar | 31993257PubMed |

Baumann, J. M., Walker, K., Threlfall, C., and Williams, N. S. (2016). African Carder bee, Afranthidium (Immanthidium) repetitum (Hymenoptera: Megachilidae): a new exotic species for Victoria. Victorian Naturalist 133, 21.

Bean, M. J., and Wilcove, D. S. (1997). The private-land problem. Conservation Biology 11, 1–2.
The private-land problem.Crossref | GoogleScholarGoogle Scholar |

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., and Frusher, S. (2014). Statistical solutions for error and bias in global citizen science datasets. Biological Conservation 173, 144–154.
Statistical solutions for error and bias in global citizen science datasets.Crossref | GoogleScholarGoogle Scholar |

Blackburn, T. M., Bellard, C., and Ricciardi, A. (2019). Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment 17, 203–207.
Alien versus native species as drivers of recent extinctions.Crossref | GoogleScholarGoogle Scholar |

Boakes, E. H., McGowan, P. J., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K., and Mace, G. M. (2010). Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biology 8, e1000385.
Distorted views of biodiversity: spatial and temporal bias in species occurrence data.Crossref | GoogleScholarGoogle Scholar | 20532234PubMed |

Booth, D. J., and Sear, J. (2018). Coral expansion in Sydney and associated coral-reef fishes. Coral Reefs 37, 995.
Coral expansion in Sydney and associated coral-reef fishes.Crossref | GoogleScholarGoogle Scholar |

Brito, D. (2010). Overcoming the Linnean shortfall: data deficiency and biological survey priorities. Basic and Applied Ecology 11, 709–713.
Overcoming the Linnean shortfall: data deficiency and biological survey priorities.Crossref | GoogleScholarGoogle Scholar |

Brown, E. D., and Williams, B. K. (2019). The potential for citizen science to produce reliable and useful information in ecology. Conservation Biology 33, 561–569.
The potential for citizen science to produce reliable and useful information in ecology.Crossref | GoogleScholarGoogle Scholar | 30242907PubMed |

Burgess, H. K., DeBey, L. B., Froehlich, H. E., Schmidt, N., Theobald, E. J., Ettinger, A. K., HilleRisLambers, J., Tewksbury, J., and Parrish, J. K. (2017). The science of citizen science: exploring barriers to use as a primary research tool. Biological Conservation 208, 113–120.
The science of citizen science: exploring barriers to use as a primary research tool.Crossref | GoogleScholarGoogle Scholar |

Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J., and Cornwell, W. K. (2019). Optimizing future biodiversity sampling by citizen scientists. Proceedings. Biological Sciences 286, 20191487.
Optimizing future biodiversity sampling by citizen scientists.Crossref | GoogleScholarGoogle Scholar | 31575364PubMed |

Callaghan, C. T., Ozeroff, I., Hitchcock, C., and Chandler, M. (2020a). Capitalizing on opportunistic science data to monitor urban biodiversity: a multi-taxa framework. Biological Conservation 251, 108753.

Callaghan, C. T., Poore, A. G., Mesaglio, T., Moles, A. T., Nakagawa, S., Roberts, C., Rowley, J. J., Vergés, A., Wilshire, J. H., and Cornwell, W. K. (2020b). Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63.
Three frontiers for the future of biodiversity research using citizen science data.Crossref | GoogleScholarGoogle Scholar |

Callaghan, C. T., Roberts, J. D., Poore, A. G., Alford, R. A., Cogger, H., and Rowley, J. J. (2020c). Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodiversity and Conservation 29, 1323–1337.
Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met.Crossref | GoogleScholarGoogle Scholar |

Campos‐Cerqueira, M., and Aide, T. M. (2016). Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods in Ecology and Evolution 7, 1340–1348.
Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling.Crossref | GoogleScholarGoogle Scholar |

Cardoso, P., Erwin, T. L., Borges, P. A., and New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144, 2647–2655.
The seven impediments in invertebrate conservation and how to overcome them.Crossref | GoogleScholarGoogle Scholar |

Cavalier, D., and Kennedy, E. B. (Eds) (2016). ‘The Rightful Place of Science: Citizen Science.’ (Consortium for Science, Policy & Outcomes.)

Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America 114, E6089–E6096.
Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines.Crossref | GoogleScholarGoogle Scholar | 28696295PubMed |

Chandler, M., See, L., Copas, K., Bonde, A. M., López, B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., and Rosemartin, A. (2017). Contribution of citizen science towards international biodiversity monitoring. Biological Conservation 213, 280–294.
Contribution of citizen science towards international biodiversity monitoring.Crossref | GoogleScholarGoogle Scholar |

Couvet, D., Jiguet, F., Julliard, R., Levrel, H., and Teyssedre, A. (2008). Enhancing citizen contributions to biodiversity science and public policy. Interdisciplinary Science Reviews 33, 95–103.
Enhancing citizen contributions to biodiversity science and public policy.Crossref | GoogleScholarGoogle Scholar |

Danielsen, F., Burgess, N. D., and Balmford, A. (2005). Monitoring matters: examining the potential of locally-based approaches. Biodiversity and Conservation 14, 2507–2542.
Monitoring matters: examining the potential of locally-based approaches.Crossref | GoogleScholarGoogle Scholar |

de Vries, M., Land-Zandstra, A., and Smeets, I. (2019). Citizen scientists’ preferences for communication of scientific output: a literature review. Citizen Science: Theory and Practice 4, 1–13.

Dickinson, J. L., Shirk, J., Bonter, D., Bonney, R., Crain, R. L., Martin, J., Phillips, T., and Purcell, K. (2012). The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10, 291–297.
The current state of citizen science as a tool for ecological research and public engagement.Crossref | GoogleScholarGoogle Scholar |

Didham, R. K., Barbero, F., Collins, C. M., Forister, M. L., Hassall, C., Leather, S. R., Packer, L., Saunders, M. E., and Stewart, A. J. (2020a). Spotlight on insects: trends, threats and conservation challenges. Insect Conservation and Diversity 13, 99–102.
Spotlight on insects: trends, threats and conservation challenges.Crossref | GoogleScholarGoogle Scholar |

Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H., Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., and Stewart, A. J. (2020b). Interpreting insect declines: seven challenges and a way forward. Insect Conservation and Diversity 13, 103–114.
Interpreting insect declines: seven challenges and a way forward.Crossref | GoogleScholarGoogle Scholar |

Domroese, M. C., and Johnson, E. A. (2017). Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biological Conservation 208, 40–47.
Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project.Crossref | GoogleScholarGoogle Scholar |

Dowthwaite, L., and Sprinks, J. (2019). Citizen science and the professional–amateur divide: lessons from differing online practices. Journal of Science Communication 18, A06.
Citizen science and the professional–amateur divide: lessons from differing online practices.Crossref | GoogleScholarGoogle Scholar |

Drury, J. P., Barnes, M., Finneran, A. E., Harris, M., and Grether, G. F. (2019). Continent‐scale phenotype mapping using citizen scientists’ photographs. Ecography 42, 1436–1445.
Continent‐scale phenotype mapping using citizen scientists’ photographs.Crossref | GoogleScholarGoogle Scholar |

Dunn, G., Bos, J. J., and Brown, R. R. (2018). Mediating the science-policy interface: insights from the urban water sector in Melbourne, Australia. Environmental Science & Policy 82, 143–150.
Mediating the science-policy interface: insights from the urban water sector in Melbourne, Australia.Crossref | GoogleScholarGoogle Scholar |

Einoder, L. D., Southwell, D. M., Lahoz-Monfort, J. J., Gillespie, G. R., Fisher, A., and Wintle, B. A. (2018). Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS One 13, e0203304.
Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods.Crossref | GoogleScholarGoogle Scholar | 30335847PubMed |

Ellwood, E. R., Crimmins, T. M., and Miller-Rushing, A. J. (2017). Citizen science and conservation: recommendations for a rapidly moving field. Biological Conservation 208, 1–4.
Citizen science and conservation: recommendations for a rapidly moving field.Crossref | GoogleScholarGoogle Scholar |

Emery, R. N., Fagan, L., McCauley, R., Hardie, D., Hammond, N., Cook, D., Wright, D., Cousins, D., Russell, J., and Garel, N. (2016). MyPestGuide – the ‘BEST’ suite of biosecurity engagement and surveillance tools. In ‘2016 International Congress of Entomology’. (Entomological Society of America: Annapolis, MD, USA.)

Erickson, R. A., and Burt, W. G. (2019). Additional information on a nonnative whiptail population (Aspidoscelis flagellicauda/sonorae complex) in suburban Orange County, California. Bulletin of the Southern California Academy of Sciences 118, 76–78.
Additional information on a nonnative whiptail population (Aspidoscelis flagellicauda/sonorae complex) in suburban Orange County, California.Crossref | GoogleScholarGoogle Scholar |

Fetterplace, L. C., Turnbull, J. W., Knott, N. A., and Hardy, N. A. (2018). The devil in the deep: expanding the known habitat of a rare and protected fish. European Journal of Ecology 4, 22–29.
The devil in the deep: expanding the known habitat of a rare and protected fish.Crossref | GoogleScholarGoogle Scholar |

Fithian, W., Elith, J., Hastie, T., and Keith, D. A. (2015). Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods in Ecology and Evolution 6, 424–438.
Bias correction in species distribution models: pooling survey and collection data for multiple species.Crossref | GoogleScholarGoogle Scholar | 27840673PubMed |

Gazdic, M., and Groom, Q. (2019). iNaturalist is an unexploited source of plant–insect interaction data. Biodiversity Information Science and Standards 3, e37303.
iNaturalist is an unexploited source of plant–insect interaction data.Crossref | GoogleScholarGoogle Scholar |

Geldmann, J., Heilmann‐Clausen, J., Holm, T. E., Levinsky, I., Markussen, B., Olsen, K., Rahbek, C., and Tøttrup, A. P. (2016). What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Diversity & Distributions 22, 1139–1149.
What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements.Crossref | GoogleScholarGoogle Scholar |

Grube, M., Gaya, E., Kauserud, H., Smith, A. M., Avery, S. V., Fernstad, S. J., Muggia, L., Martin, M. D., Eivindsen, T., Koljalg, U., and Bendiksby, M. (2017). The next generation fungal diversity researcher. Fungal Biology Reviews 31, 124–130.
The next generation fungal diversity researcher.Crossref | GoogleScholarGoogle Scholar |

Harvey, J. A., Heinen, R., Armbrecht, I., Basset, Y., Baxter-Gilbert, J. H., Bezemer, T. M., Böhm, M., Bommarco, R., Borges, P. A., Cardoso, P., and Clausnitzer, V. (2020). International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology & Evolution 4, 174–176.
International scientists formulate a roadmap for insect conservation and recovery.Crossref | GoogleScholarGoogle Scholar |

He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M. N., Schmidtlein, S., Turner, W., Wegmann, M., and Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1, 4–18.
Will remote sensing shape the next generation of species distribution models?Crossref | GoogleScholarGoogle Scholar |

Hewish, M. (2019). Swamp Bluet Coenagrion lyelli Tillyard (Odonata: Zygoptera: Coenagrionidae) In South Australia. Victorian Entomologist 49, 81.

Hickey, G. M., Forest, P., Sandall, J. L., Lalor, B. M., and Keenan, R. J. (2013). Managing the environmental science–policy nexus in government: perspectives from public servants in Canada and Australia. Science & Public Policy 40, 529–543.
Managing the environmental science–policy nexus in government: perspectives from public servants in Canada and Australia.Crossref | GoogleScholarGoogle Scholar |

Hochmair, H. H., Scheffrahn, R. H., Basille, M., and Boone, M. (2020). Evaluating the data quality of iNaturalist termite records. PLoS One 15, e0226534.
Evaluating the data quality of iNaturalist termite records.Crossref | GoogleScholarGoogle Scholar | 32365126PubMed |

Hoffmann, B. D., and Broadhurst, L. M. (2016). The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18.
The economic cost of managing invasive species in Australia.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P. (2019). An advocate for taxonomic research in Australia. Pacific Conservation Biology 25, 34–36.
An advocate for taxonomic research in Australia.Crossref | GoogleScholarGoogle Scholar |

Irga, P. J., Barker, K., and Torpy, F. R. (2018). Conservation mycology in Australia and the potential role of citizen science. Conservation Biology 32, 1031–1037.
Conservation mycology in Australia and the potential role of citizen science.Crossref | GoogleScholarGoogle Scholar | 29687520PubMed |

Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P., and Roy, D. B. (2014). Statistics for citizen science: extracting signals of change from noisy ecological data. Methods in Ecology and Evolution 5, 1052–1060.
Statistics for citizen science: extracting signals of change from noisy ecological data.Crossref | GoogleScholarGoogle Scholar |

Ives, C. D., Lentini, P. E., Threlfall, C. G., Ikin, K., Shanahan, D. F., Garrard, G. E., Bekessy, S. A., Fuller, R. A., Mumaw, L., Rayner, L., and Rowe, R. (2016). Cities are hotspots for threatened species. Global Ecology and Biogeography 25, 117–126.
Cities are hotspots for threatened species.Crossref | GoogleScholarGoogle Scholar |

Jain, A., Chan, S. K. M., Soh, M., and Chow, L. (2019). Rediscovery of the orange gull butterfly, Cepora iudith malaya, in Singapore. Singapore Biodiversity Records , 22–23.

Johnson, M. F., Hannah, C., Acton, L., Popovici, R., Karanth, K. K., and Weinthal, E. (2014). Network environmentalism: citizen scientists as agents for environmental advocacy. Global Environmental Change 29, 235–245.
Network environmentalism: citizen scientists as agents for environmental advocacy.Crossref | GoogleScholarGoogle Scholar |

Jones, C. D., Glon, M. G., Cedar, K., Paiero, S. M., Pratt, P. D., and Preney, T. J. (2019). First record of paintedhand mudbug (Lacunicambarus polychromatus) in Ontario and Canada and the significance of iNaturalist in making new discoveries. Canadian Field Naturalist 133, 160–166.
First record of paintedhand mudbug (Lacunicambarus polychromatus) in Ontario and Canada and the significance of iNaturalist in making new discoveries.Crossref | GoogleScholarGoogle Scholar |

Kirchhoff, C., Callaghan, C. T., Keith, D. A., Indiarto, D., Taseski, G., Ooi, M. K., Le Breton, T. D., Mesaglio, T., Kingsford, R. T., and Cornwell, W. (2021). Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. The Science of the Total Environment 755, 142348.
Rapidly mapping fire effects on biodiversity at a large-scale using citizen science.Crossref | GoogleScholarGoogle Scholar | 33045599PubMed |

Kobori, H., Dickinson, J. L., Washitani, I., Sakurai, R., Amano, T., Komatsu, N., Kitamura, W., Takagawa, S., Koyama, K., Ogawara, T., and Miller-Rushing, A. J. (2016). Citizen science: a new approach to advance ecology, education, and conservation. Ecological Research 31, 1–19.
Citizen science: a new approach to advance ecology, education, and conservation.Crossref | GoogleScholarGoogle Scholar |

Lehtinen, R. M., Carlson, B. M., Hamm, A. R., Riley, A. G., Mullin, M. M., and Gray, W. J. (2020). Dispatches from the neighborhood watch: using citizen science and field survey data to document color morph frequency in space and time. Ecology and Evolution 10, 1526–1538.
Dispatches from the neighborhood watch: using citizen science and field survey data to document color morph frequency in space and time.Crossref | GoogleScholarGoogle Scholar | 32076531PubMed |

Lepczyk, C. A. (2005). Integrating published data and citizen science to describe bird diversity across a landscape. Journal of Applied Ecology 42, 672–677.
Integrating published data and citizen science to describe bird diversity across a landscape.Crossref | GoogleScholarGoogle Scholar |

Liu, X., Blackburn, T. M., Song, T., Wang, X., Huang, C., and Li, Y. (2020). Animal invaders threaten protected areas worldwide. Nature Communications 11, 1–9.

Lloyd, T. J., Fuller, R. A., Oliver, J. L., Tulloch, A., Barnes, M., and Steven, R. (2020). Estimating the spatial coverage of citizen science for monitoring threatened species. Global Ecology and Conservation 23, e01048.
Estimating the spatial coverage of citizen science for monitoring threatened species.Crossref | GoogleScholarGoogle Scholar |

McKinley, D. C., Miller-Rushing, A. J., Ballard, H. L., Bonney, R., Brown, H., Cook-Patton, S. C., Evans, D. M., French, R. A., Parrish, J. K., Phillips, T. B., and Ryan, S. F. (2017). Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208, 15–28.
Citizen science can improve conservation science, natural resource management, and environmental protection.Crossref | GoogleScholarGoogle Scholar |

Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S., and Shanley, L. (2018). Citizen science for policy formulation and implementation. In ‘Citizen Science: Innovation in Open Science, Society and Policy’. (Eds S. Hecker, M. Haklay, A. Bowser, Z. Makuch, J. Vogel, and A. Bonn.) pp. 219–240. (UCL Press: London, UK.)

New, T. R. (2018). Promoting and developing insect conservation in Australia’s urban environments. Austral Entomology 57, 182–193.
Promoting and developing insect conservation in Australia’s urban environments.Crossref | GoogleScholarGoogle Scholar |

Osawa, T. (2019). Perspectives on biodiversity informatics for ecology. Ecological Research 34, 446–456.
Perspectives on biodiversity informatics for ecology.Crossref | GoogleScholarGoogle Scholar |

Pacifici, K., Reich, B. J., Miller, D. A., Gardner, B., Stauffer, G., Singh, S., McKerrow, A., and Collazo, J. A. (2017). Integrating multiple data sources in species distribution modeling: a framework for data fusion. Ecology 98, 840–850.
Integrating multiple data sources in species distribution modeling: a framework for data fusion.Crossref | GoogleScholarGoogle Scholar | 28027588PubMed |

Parrish, J. K., Burgess, H., Weltzin, J. F., Fortson, L., Wiggins, A., and Simmons, B. (2018). Exposing the science in citizen science: fitness to purpose and intentional design. Integrative and Comparative Biology 58, 150–160.
| 29790942PubMed |

Pearse, H. (2020). Deliberation, citizen science and covid‐19. The Political Quarterly 91, 571–577.
Deliberation, citizen science and covid‐19.Crossref | GoogleScholarGoogle Scholar |

Piccolo, R. L., Warnken, J., Chauvenet, A. L. M., and Castley, J. G. (2020). Location biases in ecological research on Australian terrestrial reptiles. Scientific Reports 10, 9691.
Location biases in ecological research on Australian terrestrial reptiles.Crossref | GoogleScholarGoogle Scholar | 32546845PubMed |

Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D., and Roy, H. E. (2017). The diversity and evolution of ecological and environmental citizen science. PLoS One 12, e0172579.
The diversity and evolution of ecological and environmental citizen science.Crossref | GoogleScholarGoogle Scholar | 28369087PubMed |

Pocock, M. J., Roy, H. E., August, T., Kuria, A., Barasa, F., Bett, J., Githiru, M., Kairo, J., Kimani, J., Kinuthia, W., and Kissui, B. (2019). Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. Journal of Applied Ecology 56, 274–281.
Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa.Crossref | GoogleScholarGoogle Scholar |

Poisson, A. C., McCullough, I. M., Cheruvelil, K. S., Elliott, K. C., Latimore, J. A., and Soranno, P. A. (2020). Quantifying the contribution of citizen science to broad‐scale ecological databases. Frontiers in Ecology and the Environment 18, 19–26.
Quantifying the contribution of citizen science to broad‐scale ecological databases.Crossref | GoogleScholarGoogle Scholar |

Richart, C. H., Chichester, L. F., Boyer, B., and Pearce, T. A. (2019). Rediscovery of the southern California endemic American Keeled Slug Anadenulus cockerelli (Hemphill, 1890) after a 68-year hiatus. Journal of Natural History 53, 1515–1531.
Rediscovery of the southern California endemic American Keeled Slug Anadenulus cockerelli (Hemphill, 1890) after a 68-year hiatus.Crossref | GoogleScholarGoogle Scholar |

Richter, R. (2015). Rediscovery of the rare coccinellid Micraspis flavovittata (Crotch, 1874) in western Victoria (Coleoptera: Coccinellidae). Australian Entomologist 42, 73.

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐Arroita, G., Hauenstein, S., Lahoz‐Monfort, J. J., Schröder, B., Thuiller, W., and Warton, D. I. (2017). Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929.
Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure.Crossref | GoogleScholarGoogle Scholar |

Rowley, J. J., Callaghan, C. T., Cutajar, T., Portway, C., Potter, K., Mahony, S., Trembath, D. F., Flemons, P., and Woods, A. (2019). FrogID: citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology 14, 155–170.

Roy‐Dufresne, E., Saltré, F., Cooke, B. D., Mellin, C., Mutze, G., Cox, T., and Fordham, D. A. (2019). Modeling the distribution of a wide‐ranging invasive species using the sampling efforts of expert and citizen scientists. Ecology and Evolution 9, 11053–11063.
Modeling the distribution of a wide‐ranging invasive species using the sampling efforts of expert and citizen scientists.Crossref | GoogleScholarGoogle Scholar | 31641454PubMed |

Sands, D. P. (2018). Important issues facing insect conservation in Australia: now and into the future. Austral Entomology 57, 150–172.
Important issues facing insect conservation in Australia: now and into the future.Crossref | GoogleScholarGoogle Scholar |

Schmidt‐Lebuhn, A. N., Knerr, N. J., and González‐Orozco, C. E. (2012). Distorted perception of the spatial distribution of plant diversity through uneven collecting efforts: the example of Asteraceae in Australia. Journal of Biogeography 39, 2072–2080.
Distorted perception of the spatial distribution of plant diversity through uneven collecting efforts: the example of Asteraceae in Australia.Crossref | GoogleScholarGoogle Scholar |

Schubert, J. (2020). First records of Maratus robinsoni Otto & Hill 2012 and Maratus vultus Otto & Hill 2016 (Araneae: Salticidae: Euophryini: Maratus Karsch 1878) from Victoria, Australia. Peckhamia 206, 1–7.

Silvertown, J., Harvey, M., Greenwood, R., Dodd, M., Rosewell, J., Rebelo, T., Ansine, J., and McConway, K. (2015). Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146.
Crowdsourcing the identification of organisms: a case-study of iSpot.Crossref | GoogleScholarGoogle Scholar |

Simmons, B. I., Balmford, A., Bladon, A. J., Christie, A. P., De Palma, A., Dicks, L. V., Gallego‐Zamorano, J., Johnston, A., Martin, P. A., Purvis, A., and Rocha, R. (2019). Worldwide insect declines: an important message, but interpret with caution. Ecology and Evolution 9, 3678–3680.
Worldwide insect declines: an important message, but interpret with caution.Crossref | GoogleScholarGoogle Scholar | 31015957PubMed |

Skejo, J., Connors, M., Hendriksen, M., Lambert, N., Chong, G., McMaster, I., Monaghan, N., Rentz, D., Richter, R., Rose, K., and Franjević, D. (2020). Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys 948, 107–119.
Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers.Crossref | GoogleScholarGoogle Scholar | 32765173PubMed |

Steven, R., Barnes, M., Garnett, S. T., Garrard, G., O’Connor, J., Oliver, J. L., Robinson, C., Tulloch, A., and Fuller, R. A. (2019). Aligning citizen science with best practice: threatened species conservation in Australia. Conservation Science and Practice 1, e100.
Aligning citizen science with best practice: threatened species conservation in Australia.Crossref | GoogleScholarGoogle Scholar |

Taylor, G. S., Braby, M. F., Moir, M. L., Harvey, M. S., Sands, D. P., New, T. R., Kitching, R. L., McQuillan, P. B., Hogendoorn, K., Glatz, R. V., and Andren, M. (2018). Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia. Austral Entomology 57, 124–149.
Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia.Crossref | GoogleScholarGoogle Scholar |

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., and Legendre, F. (2017). Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7, 9132.
Taxonomic bias in biodiversity data and societal preferences.Crossref | GoogleScholarGoogle Scholar | 28831097PubMed |

Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J., and Martin, T. G. (2013). Realising the full potential of citizen science monitoring programs. Biological Conservation 165, 128–138.
Realising the full potential of citizen science monitoring programs.Crossref | GoogleScholarGoogle Scholar |

Turak, E., Bush, A., Dela-Cruz, J., and Powell, M. (2020). Freshwater reptile persistence and conservation in cities: insights from species occurrence records. Water (Basel) 12, 651.
Freshwater reptile persistence and conservation in cities: insights from species occurrence records.Crossref | GoogleScholarGoogle Scholar |

Uyeda, K. A., Stow, D. A., and Richart, C. H. (2020). Assessment of volunteered geographic information for vegetation mapping. Environmental Monitoring and Assessment 192, 554.
Assessment of volunteered geographic information for vegetation mapping.Crossref | GoogleScholarGoogle Scholar | 32737593PubMed |

Vásquez-Restrepo, J. D., and Lapwong, Y. (2018). Confirming the presence of a fourth species of non-native house gecko of the genus Hemidactylus Oken, 1817 (Squamata, Gekkonidae) in Colombia. Check List 14, 665.
Confirming the presence of a fourth species of non-native house gecko of the genus Hemidactylus Oken, 1817 (Squamata, Gekkonidae) in Colombia.Crossref | GoogleScholarGoogle Scholar |

Vuong, Q. H. (2018). The (ir)rational consideration of the cost of science in transition economies. Nature Human Behaviour 2, 5.
The (ir)rational consideration of the cost of science in transition economies.Crossref | GoogleScholarGoogle Scholar | 30980055PubMed |

Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology 65, 457–480.
Insect declines in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 31610138PubMed |

Walker, K. (2014). BowerBird: a home for Australian citizen science. Wildlife Australia 51, 34.

Wang, Y., Casajus, N., Buddle, C., Berteaux, D., and Larrivée, M. (2018). Predicting the distribution of poorly-documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros niger), using museum specimens and citizen science data. PLoS One 13, e0201094.
Predicting the distribution of poorly-documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros niger), using museum specimens and citizen science data.Crossref | GoogleScholarGoogle Scholar | 30589881PubMed |

Ward, M. S., Simmonds, J. S., Reside, A. E., Watson, J. E., Rhodes, J. R., Possingham, H. P., Trezise, J., Fletcher, R., File, L., and Taylor, M. (2019). Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia. Conservation Science and Practice 1, e117.
Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia.Crossref | GoogleScholarGoogle Scholar |

Wiggins, A., Newman, G., Stevenson, R. D., and Crowston, K. (2011). Mechanisms for data quality and validation in citizen science. In ‘2011 IEEE Seventh International Conference on e-Science Workshops’. pp. 14–19. (IEEE Computer Society: Washington, DC, USA.)

Williams, A., Althaus, F., Pogonoski, J., Osterhage, D., Gomon, M., Graham, K., Appleyard, S. A., Gledhill, D., Bray, D., McMillan, P., and Green, M. (2018). Composition, diversity and biogeographic affinities of the deep-sea (200–3000 m) fish assemblage in the Great Australian Bight, Australia. Deep-sea Research. Part II, Topical Studies in Oceanography 157–158, 92–105.
Composition, diversity and biogeographic affinities of the deep-sea (200–3000 m) fish assemblage in the Great Australian Bight, Australia.Crossref | GoogleScholarGoogle Scholar |

Wilson, J. S., Pan, A. D., General, D. E. M., and Koch, J. B. (2020). More eyes on the prize: an observation of a very rare, threatened species of Philippine Bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology. Journal of Insect Conservation 24, 727–729.
More eyes on the prize: an observation of a very rare, threatened species of Philippine Bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C., Russell-Smith, J., Andersen, A. N., and Brennan, K. (2009). Fire management and biodiversity of the western Arnhem Land Plateau. In ‘Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition’. (Eds J. Russell-Smith, P. J. Whitehead, and P. M. Cooke.) pp. 201–228. (CSIRO Publishing: Melbourne, Vic., Australia.)

Wood, C., Sullivan, B., Iliff, M., Fink, D., and Kelling, S. (2011). eBird: engaging birders in science and conservation. PLoS Biology 9, e1001220.
eBird: engaging birders in science and conservation.Crossref | GoogleScholarGoogle Scholar | 22205876PubMed |

Young, B. E., Dodge, N., Hunt, P. D., Ormes, M., Schlesinger, M. D., and Shaw, H. Y. (2019). Using citizen science data to support conservation in environmental regulatory contexts. Biological Conservation 237, 57–62.
Using citizen science data to support conservation in environmental regulatory contexts.Crossref | GoogleScholarGoogle Scholar |

Ziembicki, M. R., Woinarski, J. C., Webb, J. K., Vanderduys, E., Tuft, K., Smith, J., Ritchie, E. G., Reardon, T. B., Radford, I. J., Preece, N., and Perry, J. (2015). Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6, 169–226.
Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia.Crossref | GoogleScholarGoogle Scholar |