Supplementary material

Identifying evolutionary lineages in the *Elaeocarpus obovatus* complex: population genetics and morphometric analyses support a new subspecies, *Elaeocarpus obovatus* subsp. *umbratilis*, from northern Queensland, Australia

Yumiko Baba\(^a, D\), Maurizio Rossetto\(^b\) and Darren M. Crayn\(^a, C\)

\(^a\)Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.

\(^b\)National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.

\(^c\)Centre for Tropical Environmental Sustainability Science, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.

\(^D\)Corresponding author. Present address: Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand.

Email: ybaba@aucklandmuseum.com
Table S1. Nuclear microsatellite markers, repeats, sequences and annealing temperature employed in the polymerase chain reaction assays in this study

Size given in the length excluding the 5′M13 universal primer sequences

<table>
<thead>
<tr>
<th>Marker</th>
<th>Repeat</th>
<th>5′</th>
<th>3′</th>
<th>Size</th>
<th>Annealing temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scu01Eg</td>
<td>(AG)n</td>
<td>CCAATGAAGAATACCCCTCA</td>
<td>AGTGGCTTGTCAGAGATTA</td>
<td>292–332</td>
<td>56</td>
</tr>
<tr>
<td>scu20Eg</td>
<td>(AG)n</td>
<td>TACGCCATCACTTGCTCTCAACC</td>
<td>ACACCTACACATCTCTGCTCTA</td>
<td>144–168</td>
<td>61</td>
</tr>
<tr>
<td>scu22Eg</td>
<td>(AG)n</td>
<td>CGCTTCTTACGGTCTTCTTGAA</td>
<td>TTGGTGGCTCCCCCTGATAA</td>
<td>99–130</td>
<td>61</td>
</tr>
<tr>
<td>scu25Eg</td>
<td>(TGG)n</td>
<td>TTTGAGTAGCTCCTGCTCTGG</td>
<td>CGTGGATGTCCTCCGATT</td>
<td>282–343</td>
<td>55</td>
</tr>
<tr>
<td>scu31Eg</td>
<td>(GA)n...(GT)n</td>
<td>GCAAAGCAAGGGCAAGTTCTCTTT</td>
<td>CGGCTTCTCAAATTCACGTTATGGA</td>
<td>316–406</td>
<td>61</td>
</tr>
<tr>
<td>scu33Eg</td>
<td>(AG)n</td>
<td>GCTTTACACCAAGTGGACTACA</td>
<td>CTAAGCTTCTCGTGTTATCATTT</td>
<td>287–307</td>
<td>55</td>
</tr>
</tbody>
</table>
Table S2. Error rate for each locus across all the entities

Polymerase chain reaction (PCR) amplification failure is of 181 samples. The numbers in the parentheses indicate the numbers of samples that showed more than four peaks.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Success number/repeat samples</th>
<th>Error rate (%)</th>
<th>PCR failure</th>
<th>PCR failure rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scu01Eg</td>
<td>13/13</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>scu20Eg</td>
<td>91/93</td>
<td>2</td>
<td>17 (12)</td>
<td>17</td>
</tr>
<tr>
<td>scu22Eg</td>
<td>18/19</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>scu25Eg</td>
<td>15/15</td>
<td>0</td>
<td>14 (2)</td>
<td>9</td>
</tr>
<tr>
<td>scu31Eg</td>
<td>95/100</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>scu33Eg</td>
<td>107/111</td>
<td>4</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>339/351</td>
<td>3</td>
<td>56 of 1086</td>
<td>5</td>
</tr>
</tbody>
</table>

Table S3. Evidence of polyploidy based on allele peak counts of the microsatellites for each locus and POLYSAT ploidy assessment

‘–9’ indicates missing data. See Table 1 in the main paper for the population codes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Manual allele count</th>
<th>POLYSAT ploidy assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>scu01Eg</td>
<td>scu20Eg</td>
</tr>
<tr>
<td>AC01</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AC02</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AC03</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AC04</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AC05</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ALF1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALF2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ALF3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ALF4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALF5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ALF6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ALF7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ALF8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ALF9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ALF10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ALF11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ALF12</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ALF13</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ALF14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ALF15</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ALF16</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ALF17</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AIR1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AIR2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AIR3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>APP1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>APP2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>APP3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>APP4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sample</td>
<td>Manual allele count</td>
<td>POLYSAT Allele</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>scu01Eg</td>
<td>scu20Eg</td>
</tr>
<tr>
<td>APP5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>APP6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>APP7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>APP8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>APP9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ANPA1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ANPA2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ANPA3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ANPA4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ANPA5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ANPA6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ANPA7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ANPA8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ANPA9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANPA10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ABS1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ABS2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ABS3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ABS4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ABS5</td>
<td>1</td>
<td>–9</td>
</tr>
<tr>
<td>ABS6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ABD1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>ABD2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ABD3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ABD4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ABD5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ABD6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ABD7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ABD8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AMK1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AMK2</td>
<td>–9</td>
<td>2</td>
</tr>
<tr>
<td>AMK3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AMK4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AMK5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AMK7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AMK8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AMK10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AMK12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK13</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AMK14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AMK15</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AMK16</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AMK17</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK18</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AMK19</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AMK20</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ALL1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ALL2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ALL3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ALL4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ALL5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ALL6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ALL7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AMR1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AMR2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sample</td>
<td>Manual allele count</td>
<td>POLYSAT Allele</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Locus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sca01Eg</td>
<td>sca20Eg</td>
</tr>
<tr>
<td>AMR3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AMR4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AMR5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ANT1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ANT2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ATS1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OUC1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OUC2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>OUC3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>OUC4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OUC5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OUC6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>OUC7</td>
<td>–9</td>
<td>–9</td>
</tr>
<tr>
<td>OUC8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>OUC9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OTVE1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OTVE2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OMA1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>OMA2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OMA3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OMA4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>OMA5</td>
<td>1</td>
<td>–9</td>
</tr>
<tr>
<td>OPR1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OPR2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>OPR3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OPR4</td>
<td>1</td>
<td>–9</td>
</tr>
<tr>
<td>OPR5</td>
<td>1</td>
<td>–9</td>
</tr>
<tr>
<td>OBR1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OBR2</td>
<td>2</td>
<td>–9</td>
</tr>
<tr>
<td>OBR3</td>
<td>1</td>
<td>–9</td>
</tr>
<tr>
<td>OBR4</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OBR5</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OBR6</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OMC1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OMC2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OMC3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OMC4</td>
<td>2</td>
<td>–9</td>
</tr>
<tr>
<td>OMC5</td>
<td>2</td>
<td>–9</td>
</tr>
<tr>
<td>OML1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OML2</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OML3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OML4</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OMB1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OMB2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>OMB5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB7</td>
<td>4</td>
<td>–9</td>
</tr>
<tr>
<td>OMB8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OMB2</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OMB3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OMB4</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OBB1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OBB2</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OBB3</td>
<td>3</td>
<td>–9</td>
</tr>
<tr>
<td>OBB4</td>
<td>2</td>
<td>–9</td>
</tr>
<tr>
<td>Sample</td>
<td>Manual allele count</td>
<td>POLYSAT Allele</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Locus</td>
<td>scu01Eg scu20Eg scu22Eg scu25Eg scu31Eg scu33Eg</td>
</tr>
<tr>
<td>OBH1</td>
<td></td>
<td>2 4 2 2 2</td>
</tr>
<tr>
<td>OBH2</td>
<td></td>
<td>1 1 3 1 1</td>
</tr>
<tr>
<td>OBH3</td>
<td></td>
<td>2 -9 3 2 1</td>
</tr>
<tr>
<td>OBH4</td>
<td></td>
<td>3 -9 4 1 2</td>
</tr>
<tr>
<td>OBH5</td>
<td></td>
<td>2 -9 3 2 2 1</td>
</tr>
<tr>
<td>BCL1</td>
<td></td>
<td>2 2 2 2 2</td>
</tr>
<tr>
<td>BCL2</td>
<td></td>
<td>1 1 2 2 2</td>
</tr>
<tr>
<td>BCL3</td>
<td></td>
<td>1 2 1 1 1</td>
</tr>
<tr>
<td>BCL4</td>
<td></td>
<td>1 1 2 1 1</td>
</tr>
<tr>
<td>BPR1</td>
<td></td>
<td>1 1 2 1 2</td>
</tr>
<tr>
<td>BPR2</td>
<td></td>
<td>2 1 2 2 1 2</td>
</tr>
<tr>
<td>BPR3</td>
<td></td>
<td>2 1 2 2 2</td>
</tr>
<tr>
<td>BPR4</td>
<td></td>
<td>2 -9 2 -9 2 1</td>
</tr>
<tr>
<td>BPR5</td>
<td></td>
<td>1 -9 2 1 2</td>
</tr>
<tr>
<td>BWT1</td>
<td></td>
<td>-9 3 1 -9 -9</td>
</tr>
<tr>
<td>BWT2</td>
<td></td>
<td>2 3 2 1 1</td>
</tr>
<tr>
<td>BWT3</td>
<td></td>
<td>1 4 2 3 1</td>
</tr>
<tr>
<td>BWT4</td>
<td></td>
<td>2 -9 1 -9 2</td>
</tr>
<tr>
<td>BWT5</td>
<td></td>
<td>1 -9 2 2 2</td>
</tr>
<tr>
<td>BMlL1</td>
<td></td>
<td>2 2 2</td>
</tr>
<tr>
<td>BMlL2</td>
<td></td>
<td>1 1 2 1 1</td>
</tr>
<tr>
<td>BMlL3</td>
<td></td>
<td>1 1 2 1 1</td>
</tr>
<tr>
<td>BMlL4</td>
<td></td>
<td>1 -9 2 -9</td>
</tr>
<tr>
<td>BTR1</td>
<td></td>
<td>1 -9 1 1</td>
</tr>
<tr>
<td>BTR2</td>
<td></td>
<td>1 -9 2</td>
</tr>
<tr>
<td>BTR3</td>
<td></td>
<td>1 -9 2 -9</td>
</tr>
<tr>
<td>BTR4</td>
<td></td>
<td>1 -9 2 -9</td>
</tr>
<tr>
<td>BTR5</td>
<td></td>
<td>-9 -9 2 -9</td>
</tr>
<tr>
<td>BDC1</td>
<td></td>
<td>1 2 2 2 1</td>
</tr>
<tr>
<td>BDC2</td>
<td></td>
<td>1 1 2 2 2</td>
</tr>
<tr>
<td>BDC3</td>
<td></td>
<td>2 1 2 1 2</td>
</tr>
<tr>
<td>ADC1</td>
<td></td>
<td>2 1 2 1 1</td>
</tr>
<tr>
<td>ADC2</td>
<td></td>
<td>2 2 1 2 -9</td>
</tr>
<tr>
<td>ADC3</td>
<td></td>
<td>1 1 1 2</td>
</tr>
<tr>
<td>COO1</td>
<td></td>
<td>2 3 3 1</td>
</tr>
<tr>
<td>COO2</td>
<td></td>
<td>2 1 2 2</td>
</tr>
</tbody>
</table>

Manipulated to adjust to the minimum ploidy level of two.
Table S4. Characteristics of the six nuclear microsatellite loci used in this study for *Elaeocarpus arnhemicus*, *E. obovatus* and *E. sp. Mt Bellenden Ker*

Results for *E. coorangooloo*, ADC and BDC are not shown, because samples sizes are smaller than five. s.d., standard deviation. *N*, sample size; *S*, range of allele sizes (bp); *uA*, unbiased mean number of alleles per locus (mean number of alleles per locus *A*, averaged by the number of samples in the population, *N*); *uAr*, unbiased mean number of unique alleles per locus (mean number of unique alleles per locus *A*, averaged by the number of samples in the population, *N*); *P* ≥ 2*A*, proportion of individuals with two or more alleles per locus; *R*, range of alleles per individual

<table>
<thead>
<tr>
<th>Locus</th>
<th>E. arnhemicus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>uA (P ≥ 2A)</td>
<td>uAr</td>
<td>R</td>
<td>N</td>
<td>S</td>
<td>uA (P ≥ 2A)</td>
<td>uAr</td>
<td>R</td>
<td>N</td>
<td>S</td>
<td>uA (P ≥ 2A)</td>
</tr>
<tr>
<td>scu01Eg</td>
<td>92</td>
<td>314–335</td>
<td>2.0 (0.67)</td>
<td>8</td>
<td>1–4</td>
<td>56</td>
<td>310–341</td>
<td>2.3 (0.70)</td>
<td>11</td>
<td>1–4</td>
<td>21</td>
<td>316–335</td>
<td>1.3 (0.33)</td>
</tr>
<tr>
<td>scu20Eg</td>
<td>92</td>
<td>160–184</td>
<td>2.3 (0.83)</td>
<td>12</td>
<td>1–4</td>
<td>37</td>
<td>160–186</td>
<td>2.4 (0.97)</td>
<td>13</td>
<td>1–4</td>
<td>13</td>
<td>164–172</td>
<td>1.7 (0.46)</td>
</tr>
<tr>
<td>scu22Eg</td>
<td>92</td>
<td>120–144</td>
<td>2.7 (0.98)</td>
<td>13</td>
<td>1–4</td>
<td>55</td>
<td>116–148</td>
<td>2.6 (0.80)</td>
<td>15</td>
<td>1–4</td>
<td>23</td>
<td>128–136</td>
<td>2.5 (0.82)</td>
</tr>
<tr>
<td>scu25Eg</td>
<td>87</td>
<td>300–340</td>
<td>2.2 (0.80)</td>
<td>9</td>
<td>1–4</td>
<td>54</td>
<td>300–343</td>
<td>1.7 (0.52)</td>
<td>7</td>
<td>1–4</td>
<td>16</td>
<td>300–340</td>
<td>1.6 (0.38)</td>
</tr>
<tr>
<td>scu31Eg</td>
<td>93</td>
<td>372–390</td>
<td>2.5 (0.88)</td>
<td>7</td>
<td>1–4</td>
<td>57</td>
<td>374–420</td>
<td>2.0 (0.65)</td>
<td>15</td>
<td>1–4</td>
<td>22</td>
<td>372–424</td>
<td>2.0 (0.77)</td>
</tr>
<tr>
<td>scu33Eg</td>
<td>92</td>
<td>305–325</td>
<td>2.8 (0.98)</td>
<td>9</td>
<td>1–4</td>
<td>52</td>
<td>309–325</td>
<td>1.9 (0.62)</td>
<td>7</td>
<td>1–4</td>
<td>19</td>
<td>319–325</td>
<td>1.1 (0.05)</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>–</td>
<td>2.4 (s.d. = 0.31)</td>
<td>58</td>
<td>–</td>
<td>57</td>
<td>–</td>
<td>2.2 (s.d. = 0.34)</td>
<td>68</td>
<td>23</td>
<td>–</td>
<td>1.7 (s.d. = 0.50)</td>
<td>35</td>
</tr>
</tbody>
</table>

Three alleles were found in individuals from BWT at scu20Eg & scu25Eg.