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The following supporting material is composed of two parts. In section S1, a technical 

description of the individual based model is provided, following the guidelines of 

(O)verview, (D)esign concepts and (D)etails established by Grimm et al. (1). Section S2 

describes the procedures carried out to calibrate and parametrise the model, in particular 

how to update the partnership network, and how to set the transmission rate 𝛽𝛽. The model 

code is available online: https://data.bris.ac.uk/data/dataset/3erdo698eboli2ptxi324rsuhg 

 

S1 Technical description of individual-based model 

Overview 

Purpose 

The model is a stochastic, discrete-time Markov model which describes individual-level 

gonorrhoea transmission and recovery, within a dynamic sexual partnership network. Two 

independent infection strains are modelled, differing only in their response to a choice of 

two treatment interventions: a ciprofloxacin and ceftriaxone susceptible (non-AMR) strain, 

and a ciprofloxacin resistant but ceftriaxone susceptible (AMR) strain. Recovery from either 

infection is either spontaneous (natural recovery), or by means of an intervention in which a 

choice of two drugs is administered: ciprofloxacin (Cipr) or ceftriaxone (Ceft). While this is 

clearly a significant simplification of disease epidemiology and treatment in reality, the aim 

of the model is to explore whether antibiotic stewardship can be improved by re-

introducing an older drug to treat infections to which they are susceptible. The choice of 

drug and the specific recovery pathway of an individual depends on a number of different 

experimental scenarios — described in Implementation of treatment scenarios. Recovery 
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pathways are voluntary treatment seeking for symptomatics, partner notification (tracing) 

and patient recall following misdiagnosis or positivity after random testing. The model 

framework subsequently allows for different diagnostic and treatment scenarios to be 

simulated such that we can assess the impact of rapid (point-of-care) and other testing 

strategies on infection prevalence, and the volume and efficacy of each drug choice. 

State variables and scales 

Individuals are represented by a set of time varying state vectors representing the infection 

status with respect to the two gonorrhoea strains, the presence of symptoms, and 

‘notification’ flags controlling if and when individuals attend for diagnostics or treatment. 

These notifications are used to control the temporal flow of individuals along the discrete 

treatment and recovery pathways prescribed in the model. They account for differential 

treatment of symptomatic and asymptomatic infections; the symptom onset period; 

laboratory test turnaround time; appointment delays for individuals to be recalled for 

treatment after testing; and similar delays for traced individuals (notified partners) to 

attend for diagnosis or treatment. 

Closed populations of individuals are considered, where the contact network structure and 

model parameters reflect male men who have sex with men (MSM) interactions. The age 

and gender of individuals are therefore not considered within the current framework. 

 

Parameter description Symbol Value Source 

Partnership network 

Maximum # partners (full network) 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 120 (2) 
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Power-law slope 𝛼𝛼 1.6 (2)  

Restricted degree (max. per update) 𝑘𝑘𝑟𝑟 10 Selected 

Network update period 𝜏𝜏𝑟𝑟 7 days Selected 

Transmission dynamics 

Transmission rate 𝛽𝛽 2.2×10−3  𝑑𝑑𝑑𝑑𝑑𝑑−1 Fitted 

Natural recovery rate R 6.8×10−3 𝑑𝑑𝑑𝑑𝑑𝑑−1 Fitted 

Birth/death rate 𝜇𝜇 4.6× 10−5 𝑑𝑑𝑑𝑑𝑑𝑑−1 16-75 years old 

Testing rate 𝛾𝛾 2.5× 10−3 𝑑𝑑𝑑𝑑𝑑𝑑−1 Fitted 

Tracing efficiency  𝜓𝜓 0.1 Fitted 

Symptomatic proportion  𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.5 Fitted 

Symptomatic treatment seeking proportion 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.66 Fitted 

Proportion randomly treated with Ceft  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1.0 Guidelines 

Behavioural, treatment, and testing delays 

Symptom onset delay Δ𝑉𝑉 = 𝛿𝛿𝑉𝑉 ± 𝜖𝜖𝑉𝑉 5 ± 1 Fitted 

Voluntary treatment seeking delay Δ𝑆𝑆 = 𝛿𝛿𝑆𝑆 ± 𝜖𝜖𝑆𝑆  10 ± 2 Fitted 

Recall attendance delay Δ𝑅𝑅 = 𝛿𝛿𝑅𝑅 ± 𝜖𝜖𝑅𝑅  2 ± 0.5 Fitted 

Trace attendance delay Δ𝑇𝑇 = 𝛿𝛿𝑇𝑇 ± 𝜖𝜖𝑇𝑇  7 ± 1 Fitted 

(Lab) strain phenotype test result delay Δ𝐿𝐿 = 𝛿𝛿𝐿𝐿 ± 𝜖𝜖𝐿𝐿  10±1 Fitted 

Table S1: Parameter values and descriptions. Behavioural, treatment, and testing delay parameters are given as mean ± 

standard deviation of the underlying distribution; see Section S1 for details. 
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A summary of the state variables for each individual is provided below, in which explicit 

time-dependence is omitted; the updating protocol is described in section Process overview 

and scheduling. Baseline parameter values for those described can be found in Table S1. 

● Current infection status  Ω: a two-vector for each individual, 𝑖𝑖, with binary elements 

indicating the presence or absence of a current infection with strain 𝑠𝑠, where 𝑠𝑠 = 1 is, 

the non-AMR strain susceptible to both Cipr and Ceft, and 𝑠𝑠 = 2 is the AMR strain 

susceptible only to Ceft treatment. That is, 

Ω𝑖𝑖,𝑠𝑠 = {0,1},        𝑠𝑠 ∈ {1,2}, 

where Ω𝑖𝑖 = [0 0]  means susceptible to both strains, Ω𝑖𝑖 = [1 0]  corresponds to 

infected by the non-AMR strain and susceptible to the AMR strain, Ω𝑖𝑖 = [0 1] to 

infected by the AMR strain and susceptible to the non-AMR strain, and Ω𝑖𝑖 = [1 1] to co-

infection. 

● Symptoms  𝑺𝑺: a single binary flag indicating whether an individual 𝑖𝑖, infected with either 

strain develops symptoms (𝑆𝑆𝑖𝑖 = 1) or is asymptomatic / not infected (𝑆𝑆𝑖𝑖 = 0). When 

infected with either strain, individuals are randomly assigned symptoms (which emerge 

after a delay as described below) with probability 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 or no symptoms with 

probability 1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

● Voluntary treatment seeking 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔: a single value indicating the simulation day on 

which a selected symptomatic individual 𝑖𝑖 will seek clinical treatment, having acquired 

an infection on day 𝑇𝑇, such that 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑇𝑇 + 𝑁𝑁0(𝛿𝛿𝑉𝑉, 𝜖𝜖𝑉𝑉) + 𝑁𝑁0(𝛿𝛿𝑆𝑆, 𝜖𝜖𝑆𝑆), 
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where 𝑁𝑁0(𝛿𝛿, 𝜖𝜖) is a random normal variate truncated at zero, parametrised by the mean 

𝛿𝛿 and standard deviation (s.d.) 𝜖𝜖. The parameters 𝛿𝛿𝑉𝑉, 𝜖𝜖𝑉𝑉 (respectively, 𝛿𝛿𝑆𝑆, 𝜖𝜖𝑆𝑆) correspond 

to the mean and standard deviation of treatment seeking delay (respectively, symptom 

onset delay). Symptomatic individuals seek treatment with probability 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, decided at 

the time of new infection. Individuals who are uninfected, asymptomatic or chose not to 

voluntarily seek treatment for the current infection have  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = ∅. 

● Recall notification 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓: a three-vector containing elements (1) the day on which a 

notification for an individual to return for treatment was issued, ‘post-dated’ to include 

the laboratory test turnaround delay �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑖𝑖,1�, (2) the day on which the individual will 

attend for treatment �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,2�, and (3) a flag indicating the AMR status of the infection 

on the day of issue �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,3�. The vector as a whole is given by 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = �𝑇𝑇 + 𝑁𝑁0(𝛿𝛿𝐿𝐿, 𝜖𝜖𝐿𝐿), 𝑇𝑇 + 𝑁𝑁0(𝛿𝛿𝐿𝐿, 𝜖𝜖𝐿𝐿) + 𝑁𝑁1(𝛿𝛿𝑅𝑅, 𝜖𝜖𝑅𝑅), Ω𝑖𝑖,2(𝑇𝑇) � 

where 𝑇𝑇 is the simulation day on which testing / testing was performed, with 𝑁𝑁0(𝛿𝛿, 𝜖𝜖) 

and 𝑁𝑁1(𝛿𝛿, 𝜖𝜖) given by random normal variates truncated at zero and one respectively, 

parametrised by the laboratory test turnaround delay (mean 𝛿𝛿𝑙𝑙, s.d. 𝜖𝜖𝑙𝑙), and patient 

recall delay (mean 𝛿𝛿𝑟𝑟, s.d. 𝜖𝜖𝑟𝑟). For individuals with no active recall notifications 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∅. 

● Trace notification 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: a three-vector containing elements (1) the day on which a 

partner notification request was ‘sent’ to individual 𝑖𝑖- post-dated to include the lab 

turnaround delay (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,1), (2) the day on which the notified partner will attend for 

diagnosis/treatment (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,2), and (3) the AMR status of the index individual 𝑗𝑗 which 

initiated the notification (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,3). The vector is given by 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = �𝑇𝑇 + 𝑁𝑁0(𝛿𝛿𝐿𝐿, 𝜖𝜖𝐿𝐿), 𝑇𝑇 + 𝑁𝑁0(𝛿𝛿𝐿𝐿, 𝜖𝜖𝐿𝐿) + 𝑁𝑁1(𝛿𝛿𝑇𝑇, 𝜖𝜖𝑇𝑇), Ω𝑗𝑗,2(𝑇𝑇) � 

parametrised similarly to 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 above but with unique values 𝛿𝛿𝑇𝑇 and 𝜖𝜖𝑇𝑇, respectively 

the mean and s.d. of the delay for notified (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) partners to attend for 

diagnosis/treatment. For individuals with no active trace notifications 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = ∅. 

Transmission dynamics between individuals, and partner notification, are governed by an 

explicit, time-varying partnership network which is described by the adjacency matrix  

𝐴𝐴(𝑡𝑡) = {𝑎𝑎𝑖𝑖,𝑗𝑗}𝑁𝑁𝑖𝑖,𝑗𝑗=1  ∈ ℤ𝑁𝑁×𝑁𝑁 – with elements indicating the current presence �𝑎𝑎𝑖𝑖,𝑗𝑗 = 1�, or 

absence �𝑎𝑎𝑖𝑖,𝑗𝑗 = 0� of a partnership between individuals 𝑖𝑖 and 𝑗𝑗 (see section Networks 

modelling of the sexual partnerships). Susceptible individuals who are not infected with a 

particular strain at time (day) 𝑡𝑡 can acquire one or both strains simultaneously from an 

infected partner according a stochastic process and the transmission rate 𝛽𝛽. Strains transmit 

independently of each other; there is no change in susceptibility given current (or historical) 

infection state. 

A set of local counter variables are employed to track the number of infections, and number 

and type of drug doses administered to each individual each day. Additional global counters 

(accumulators) are used to quantify the total numbers of each drug (Cipr or Ceft) 

administered, further categorised by the infection state of the individual at the time of 

treatment. These counters therefore provide important metrics describing the suitability of 

each treatment given the infection state. Other counters include totals for the number of 

individuals who are screened, traced (partners notified per index case), and recalled at each 

time step – sub-categorised by the infection strain. The strain-specific incidence (number of 

new infections per day), and prevalence (number of infected individuals), are also computed 

after each daily update. 
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The time horizon for analysis is 1 year, however the model also permits simulations over 

longer periods, in order to compare how strain prevalence may diverge over longer time 

periods (see, for example, Figure S1). 

Process overview and scheduling 

State variables (infection states, notifications, flags and counters) are updated in discrete 

time, once per day, via a series of distinct sub-processes which iteratively compute the 

individual state vectors Ω𝑖𝑖,𝑠𝑠(𝑡𝑡), 𝑆𝑆𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖(𝑡𝑡), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑡𝑡) and 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑡𝑡) from the 

corresponding values on the previous day (𝑡𝑡 − 1). All variable updates are performed 

simultaneously on state vectors, expressed as matrix of length 𝑁𝑁 (e.g. binary, two-strain 

infection state given by the Ω(𝑡𝑡) 𝜖𝜖 ℤ2𝑁𝑁×2  2-vector). Local and global level counters are 

updated accordingly, either within a sub-process or after all sub-processes are completed. 

Depending on memory restrictions, state values can either be stored for every simulation 

day, or simply overwritten at the end of each update step 
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Figure S1 Time-series plots of strain prevalence for different scenarios, with (REF) Reference scenario with 100% Ceft, (1a) 

86% Ceft:14% Cipr undirected treatment, (2b) strain discriminatory POCT and targeted treatment, (2d) Informed treatment 

choice for symptomatic treatment seeking, recalled and traced individuals, (3c) Pre-treatment testing and targeted 

treatment for traced partners, and 100% Ceft for other, non-screened treatment seekers 
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A chronological summary of the sub-process executed on each day is given below (further 

technical details are provided in Submodels where indicated): 

i. Partnership network restriction: (see Submodels) The parameter 𝜏𝜏𝑟𝑟 specifies the 

period, in days, after which a new restricted, or transient contact network is 

generated from the initial template partnership network generated on initialisation of 

each simulation. If 𝜏𝜏𝑟𝑟 days have passed since the last update, then a restriction 

algorithm (method described in section Networks modelling of the sexual 

partnerships), is used to generate a new partnership network 𝐴𝐴(𝑡𝑡) with an upper limit 

of 𝑘𝑘𝑟𝑟 partners per individual. 

ii. Transmission dynamics: (see Submodels) Using the existing infection state vector 

Ω(𝑡𝑡 − 1), new infections of either strain are generated using a stochastic process, 

based on the susceptibility of individuals, and the number of infected partners 

prescribed by the connectivity matrix 𝐴𝐴(𝑡𝑡). A random proportion 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of newly 

infected individuals are assigned symptoms (𝑆𝑆𝑖𝑖 = 1), of which a proportion 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are 

voluntary treatment seekers and assigned a date in the future on which they will 

‘attend’ for treatment. Counters and accumulators for infection incidence are updated 

accordingly. 

iii. Testing: A random proportion of (all) individuals, with independent probability 𝛾𝛾 (rate 

per day), are selected for testing. Individuals currently infected with either strain are 

given a recall notification including the day of testing, a date in the future on which 

they will attend for treatment (chosen stochastically, according to the rules described 

above), and a flag indicating the presence of any AMR infection. 
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iv. Natural recovery: A random proportion of infections present at the previous time step 

are spontaneously recovered with rate 𝑟𝑟 (per day). This is performed independently 

for each strain such that a co-infected individual is likely to remain infected with the 

single remaining strain. Any existing seek, recall or trace notifications remain 

unchanged. 

v. Births/deaths: A random proportion of individuals are spontaneously recovered of all 

infections, and existing seek, recall and trace notifications cleared, with rate 𝜇𝜇 (per 

day), remaining in the same network position. This aims to capture a (slow) recycling 

of the population due to sexual partnership network arrivals and departures. A more 

literal implementation of this process would add and remove nodes, and associated 

edges, in the network, while maintaining the overall power-law slope and maximum 

contact number. Here we consider the size of the network to be fixed over the 

timescale of the simulation, and incorporate the change in contact structure into the 

network restriction algorithm that models shorter-time variation (over days or weeks) 

in the partnership network (see Submodels). Since the rate 𝜇𝜇 is typically very small, we 

expect the impact on the results of this modelling simplification to be minor. 

vi. Treatment seeking and partner notification: (see Submodels) Individuals who have a 

notification ‘activated’ on day 𝑡𝑡, that is: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑡𝑡, or 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 𝑡𝑡, or 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,2 = 𝑡𝑡, are 

selected for treatment according to the current diagnosis and treatment scenario (see 

Simulated treatment scenarios). For example, symptomatic individuals, a proportion of 

whom choose to seek treatment after symptom onset and seek delays, will enter this 

treatment pathway on day 𝑡𝑡 if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑡𝑡, and similarly for those who have been 

screened, recalled for treatment after previous mistreatment, or notified (traced) by a 
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partner and flagged to attend treatment on day 𝑡𝑡. Note that these individuals are not 

necessarily infected on day 𝑡𝑡; they may have recovered since being screened or 

traced, or may not have become infected by contact with an infected partner. 

The procedures which follow attending treatment are subject to the specifics of the 

selected treatment scenario. In general, individual attendees are further selected for 

treatment with one of the two drug choices – either chosen in an undirected manner, 

or targeted for treatment according to the AMR status flags 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,3 or 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,3 if 

present and initialised prior to the current day. Depending on the scenario, individuals 

who attend via recall and trace pathways may be excluded from treatment and 

instead subject to (pre)testing. 

For those remaining individuals which are treated, a new infection state is generated 

depending on their current infection state Ω𝑖𝑖(𝑡𝑡) and the efficacy of the drug used, 

resulting in the following transitions. 

● Cipr (non-AMR) treatment: reverts any non-AMR infection state  Ω𝑖𝑖,1 to zero 

(susceptible), such that 

Ω𝑖𝑖(𝑡𝑡 + 1) ⟵ �0  Ω𝑖𝑖,2(𝑡𝑡)� 

where an existing AMR strain infection remains unaffected. 

● Ceft (AMR) treatment: reverts any non-AMR Ω𝑖𝑖,1, and AMR Ω𝑖𝑖,2 infection states 

to zero (susceptible), such that 

Ω𝑖𝑖(𝑡𝑡 + 1) ⟵ [0  0] 

clearing both infections if either existed prior to treatment (full cure). 
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Note that for the purposes of this investigation, both drugs are assumed to be 100% 

effective in treating susceptible strains, to be taken by all individuals to whom they are 

prescribed, and to clear infections immediately upon prescription. The resistance of 

the AMR strain Ω𝑖𝑖,2 to treatment with Cipr is the only differentiating factor between 

otherwise independent and identically transmittable strains. 

Patient recall and partner notification are implemented on the basis that all 

treatment-seeking individuals will be tested for infection, yielding an immediate result 

for point-of-care tests, or after a (stochastic) laboratory turnaround delay. 

vii. Final update: State variables Ω are updated / overwritten to reflect new infections and 

recoveries. Previously symptomatic individuals who have been recovered are reset to 

be asymptomatic (𝑆𝑆𝑖𝑖 = 0). Global counters for strain specific prevalences and time 

(day) counter are incremented, and the simulation procedure repeated from step i., 

until 𝑡𝑡 exceeds the prescribed time horizon. 

Design Concepts 

Emergence: Overall and strain-specific prevalences and drug dosing dynamics emerge from 

the behaviour of the individuals in the model, as described in the overview above; 

transmission and prescribing are represented by the empirical rules described above, and 

no “top-down” control (such as, for example, clinic capacity, or drug availability) is applied. 

Adaptation and fitness-seeking are not modelled. 

Sensing: Individuals are assumed to know their neighbours in the network (i.e., with whom 

they have sexual relationships), although they are not assumed to have perfect recall for the 

partner notification purposes, embodied in the tracing efficiency parameter. Prescribing 
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decisions are made either in absence of knowledge of infection type, or with full or partial 

knowledge when based on diagnostic testing (whether point of care or laboratory-based), 

dependent on the scenario as described in the Details section below. 

Interaction: Individuals interact to transmit the disease, with SIS-type dynamics: infected 

individuals transmit their disease to susceptible individuals (when connected in the time-

varying sexual contact network) at a fixed rate, independent of strain and time. Infected 

individuals recover, and become susceptible again, as a result of treatment or natural 

recovery, in a manner that does not depend on any interactions. 

Stochasticity: The model in inherently stochastic, to account for natural variability in all the 

processes we consider. Rates are implemented through Bernoulli processes with probability 

as specified, while delays are sampled from distributions as specified in the Overview and 

Details sections. Probabilities and distributions remain fixed, and independent of time and 

state. 

Observation: For model testing and calibration we compute measures of network, disease, 

and prescribing dynamics. Specifically, we compute overall degree distributions and 

summary statistics, together with prevalence and incidence of the disease, and drug 

dosages, both as a function of time and over the duration of the simulation. Prevalence is 

recorded overall and by strain, while prescriptions are counted in total and sub-divided by 

efficacy (optimal, over-, under-, and wasted treatment). For model analysis, only disease 

and prescribing over one simulated year are described. 

Details 
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Initialisation 

For all simulations presented in this study, infection dynamics are simulated on populations 

of 𝑵𝑵 = 𝟏𝟏𝟏𝟏, 𝟎𝟎𝟎𝟎𝟎𝟎 individuals with model parameters prescribed as per Table S1. At time (day) 

𝒕𝒕 = 𝟎𝟎, individuals are connected with a random power-law partnership network, derived 

from the full contact network after one iteration of the degree restriction algorithm 

described in section Network modelling of the sexual partnerships, resulting in a maximum 

of 𝒌𝒌𝒓𝒓 ≤ 𝟏𝟏𝟏𝟏 initial partners per individual. 

Initial infection states Ω𝑖𝑖,𝑠𝑠(𝑡𝑡 = 0) are generated as identically distributed independent 

Bernoulli random variates to obtain an overall population prevalence 𝑝𝑝0 = 0.15 (15%), 

with equal non-AMR strain (s=1) and AMR strain (s=2) prevalences: 𝑝𝑝0𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑝𝑝0𝑛𝑛𝑛𝑛𝑛𝑛−𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑝𝑝0/2. As such, at 𝑡𝑡 = 0 there are no individuals who are co-infected with both strains. For 

infected individuals (either strain), symptomatic state flags 𝑆𝑆𝑖𝑖 are set randomly to 1 

(symptomatic) with probability 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 0 (asymptomatic) with probability 1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Notification state flags – seek, recall and trace – are all initialised at 𝑡𝑡 = 0 with empty values 

in all entries. 

Prior to realisation of each experimental scenario, equilibration periods of up to 10,000 days 

are implemented, in order to achieve stable infection prevalence and incidence, and to 

allow infections to travel throughout the population network. 

Submodels 

Network modelling of the sexual partnerships 

The structure of the underlying partnership network has a fundamental impact on the 

ability of infections to propagate between individuals and throughout an interconnected 
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population (3). In contrast to vector- or air-borne diseases, the transmission dynamics of 

those spread via sexual contact, including gonorrhoea, are well described by explicit 

interaction networks, with structural properties estimated from information on sexual 

partners. In this study, we derived contact network structure based on observations that the 

distribution of sexual partners has been reported to follows a power law (2). 

Our transmission model simulates infection and recovery of individuals, embedded within 

an explicit representation of their sexual contacts using a power-law network. In the 

remainder of this section, we will provide a minimal mathematical description of the 

network (see Network notation) and state explicitly the algorithms used to establish a 

power-law network (see Generating random power-law networks) and the restricted 

network (see Contact restriction for high-degree individuals). 

Network notation 

Using standard notation (see, for example, (4, 5)), we define a graph, or network 𝒢𝒢 = {𝒱𝒱, ℰ}, 

where 𝒱𝒱 = {1,2, …𝑁𝑁} is the set of 𝑁𝑁 vertices (nodes) representing individuals, and ℰ =

{{𝑖𝑖, 𝑗𝑗}: 𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱} is a set of unordered edges (links), or sexual partnerships. Active 

partnerships between individuals, where {𝑖𝑖, 𝑗𝑗} 𝜖𝜖 ℰ, can also be expressed conveniently with 

the 𝑁𝑁 × 𝑁𝑁 adjacency matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖,𝑗𝑗�, with elements 𝑎𝑎𝑖𝑖,𝑗𝑗 = 1 if there exists an edge 

between individuals 𝑖𝑖 and 𝑗𝑗, and zero otherwise. Here we define a further constraint that 

sexual partnership networks are undirected, i.e. a link from 𝑖𝑖 to 𝑗𝑗 implies an equal and 

opposite connection from 𝑗𝑗 to 𝑖𝑖. The adjacency matrix 𝐴𝐴 is therefore symmetric, satisfying 

the condition 

𝐴𝐴 = 𝐴𝐴𝑡𝑡,   𝑎𝑎𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑗𝑗,𝑖𝑖. 
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We also ensure that ‘self-loops’ are omitted, such that 𝑎𝑎𝑖𝑖,𝑖𝑖 = 0 for all 𝑖𝑖. The number of 

active sexual partners, or contact number, of each individual i is given by the degree of each 

node: 𝑘𝑘(𝑖𝑖) = |{𝑖𝑖: {𝑖𝑖, 𝑗𝑗}  ∈  ℰ}|, equal to the number of links connected to node i. Node 

degree can equivalently be obtained from the column or row sum of 𝐴𝐴, for example 𝑘𝑘(𝑖𝑖) =

∑ 𝑎𝑎𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1 . 

Generating random power-law networks 

For each simulated realisation we generate networks where the degree sequence 𝑘𝑘 has a 

power-law distribution 𝑃𝑃(𝑘𝑘) = 𝑘𝑘−𝛼𝛼 with arbitrary slope parameter 𝛼𝛼, using a Molloy-Reed 

type degree-based construction method ((6), (7)). To obtain the required integer degree 

sequence, values are rounded to the nearest integer, lower bounded at unity (see (8) for 

more details on the reliability of this approach). 

From the integer degree sequence, we generate links between initially unconnected nodes 

using the following algorithm: 

1. Determine the number of free ‘stubs’ 𝑠𝑠(𝑖𝑖)  (residual degree) of each node 𝑖𝑖 =

[1, . . . , 𝑁𝑁], initially equal to the degree sequence 𝑠𝑠 = 𝑘𝑘. 

2. Randomly select a node 𝑖𝑖 with free stubs.  

3. Randomly select another node 𝑗𝑗 which has free stubs remaining, i.e. 𝑠𝑠(𝑗𝑗) > 0 . 

4. If 𝑖𝑖 and 𝑗𝑗 are not already connected, add an (undirected) link {𝑖𝑖, 𝑗𝑗} ∈ ℰ, and 

reduce number of free stubs 𝑠𝑠(𝑖𝑖) and 𝑠𝑠(𝑗𝑗) by one. 

5. Repeat from (3) until 𝑠𝑠(𝑖𝑖) = 0, or until all potential neighbouring stubs are used, 

i.e. ∑ 𝑠𝑠(𝑗𝑗) = 0𝑁𝑁
{𝑖𝑖,𝑗𝑗}∉𝜀𝜀 . 

6. Repeat from (2) until each node has been tested and filled accordingly. 
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In general, this procedure yields networks with final degree distribution 𝑃𝑃(𝑘𝑘) ≈ 𝑃𝑃(𝑋𝑋) where 

fitted power-law slope parameters 𝛼𝛼 for both distributions are found to be in excellent 

agreement (Figure S2). Note that compared with alternative algorithms for generating scale-

free networks, such as preferential attachment methods (9), this approach allows for 

flexibility in choosing both 𝛼𝛼 and the degree range [𝑥𝑥0, 𝑥𝑥1] – specifically the maximum 

degree 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  – precisely in accordance with available experimental data (2, 7, 10). However, 

since links between nodes are assigned randomly with no correlation between node 

degrees, resulting networks have low clustering coefficient (11) and low assortativity (12) 

compared to those produced via preferential attachment (correlated node degrees). 

Although expected to be a significant feature of sexual networks (10, 13), clustering is hard 

to infer or parameterise from data since individuals participating in anonymous surveys 

typically report only the number of different partners over a given period of time (14-16). 

Contact restriction for high-degree individuals 

An important component of our model is a novel network algorithm to capture transient 

partnership dynamics, particularly for highly connected, or promiscuous individuals. 

Previous models of gonorrhoea transmission dynamics (17, 18), and for chlamydia (19, 20), 

have focussed on developing extensively parametrised, or data-driven models to capture 

realistic network dynamics as partnerships form and dissolve over time. 

The aim of the network restriction algorithm is to incorporate time variation in partnership 

networks (timescale of days or weeks) while maintaining the longer-term structure 

(timescale of years) reported in the literature. We achieve this by producing a new 

partnership network 𝒢𝒢𝑟𝑟(𝑡𝑡), at time t, which has maximum (restricted) degree 𝑘𝑘𝑟𝑟, using the 

static, annual connectivity network 𝒢𝒢 containing all possible links as a template. As such, 
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𝒢𝒢𝑟𝑟(𝑡𝑡) is a time-varying sub-network of 𝒢𝒢, with edges ℰ𝑟𝑟 ⊂ ℰ. Additionally, we require 𝒱𝒱𝑟𝑟 =

𝒱𝒱 such that the restricted graph has the same number of nodes (individuals) as the full 

network, although some may be disconnected and have degree zero. More succinctly, the 

effect of restriction is to build a random sub-network between the same 𝑁𝑁 individuals with 

existing links from the full network, but where the degree, or contact number, of each 

individual does not exceed the given threshold 𝑘𝑘𝑟𝑟 < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. 

Algorithms to generate these random sub-networks can take one of two primary forms: a 

reductive approach, in which we remove links from the full network until the implied 

condition 𝑘𝑘(𝑖𝑖) ≤ 𝑘𝑘𝑟𝑟 ∀ 𝑖𝑖  is met, or an additive approach, in which links are added to an 

empty or time-invariant set of links until no more can be formed. For the experiments 

discussed later on, we require 𝑘𝑘𝑟𝑟 ≪ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  for each update, therefore in the interest of 

computational efficiency we found it prudent to implement the latter approach, proceeding 

as follows: 

1. Using the degree sequence 𝑘𝑘 of the full network 𝒢𝒢, find those nodes in 𝒱𝒱′ = {𝑖𝑖|𝑘𝑘(𝑖𝑖) >

𝑘𝑘𝑟𝑟}, which have degree exceeding the threshold 𝑘𝑘𝑟𝑟. 

2. Partition the reduced set of links in ℛ into two disjoint subsets: ℛ𝑓𝑓 = {{𝑖𝑖, 𝑗𝑗}|𝑖𝑖, 𝑗𝑗 ∉ 𝒱𝒱′}, 

containing fixed (time-invariant) links between nodes which both have degree less than 

or equal to threshold 𝑘𝑘𝑟𝑟, and ℛ𝑐𝑐 = ℰ\ℰ𝑓𝑓, the complement set of remaining links 

connected to one or more nodes with degree 𝑘𝑘 > 𝑘𝑘𝑟𝑟 which will be subject to random 

addition or removal. 

3. Set temporary variable 𝑘𝑘𝑐𝑐 = {𝑘𝑘𝑐𝑐(𝑖𝑖) = 0 | 𝑖𝑖 𝜖𝜖 𝒱𝒱′} indicating current degree (zero) of 

nodes with degree greater than threshold  𝑘𝑘𝑟𝑟 in the full network. 



19 
 

4. Create empty set ℛ𝑛𝑛 = ∅ for storing new links 

5. Chose edge from ℛ𝑐𝑐 = {𝑖𝑖, 𝑗𝑗}, without replacement: if the current degree of nodes 𝑖𝑖 

and 𝑗𝑗 are below threshold 𝑘𝑘𝑟𝑟, i.e. if 𝑘𝑘𝑐𝑐(𝑖𝑖) < 𝑘𝑘𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎  𝑘𝑘𝑐𝑐(𝑗𝑗) < 𝑘𝑘𝑟𝑟, then edge {𝑖𝑖, 𝑗𝑗} will be 

accepted and added to ℛ𝑛𝑛. Otherwise link is rejected and discarded. 

6. Repeat from (5) until all remaining links in ℛ𝑐𝑐 have been checked 

7. The final link list is obtained from the union of fixed links and newly accepted links, i.e. 

𝒩𝒩 = ℛ𝑓𝑓 ∪ ℛ𝑛𝑛. 

Note that for efficiency, steps (1-2) above can be precomputed at 𝑡𝑡 = 0, prior to simulation, 

and are not required to be re-evaluated for each subsequent update. 

Network transmission dynamics 

Infections of both strains are acquired according to independent stochastic processes, 

determined at each time step by computing the infection force 𝐹𝐹, as follows: 

𝐹𝐹(𝑡𝑡) = 1 − (1 − 𝛽𝛽)𝐴𝐴(𝑡𝑡)×Ω(t) 

at time 𝑡𝑡, where the 𝑖𝑖P

th row values of the matrix 𝐴𝐴(𝑡𝑡) × Ω(𝑡𝑡) yield the number of partners 

of individual 𝑖𝑖 who are infected with the non-AMR and AMR strains in columns 1 and 2 

respectively. The per-day transmission rate is 𝛽𝛽, equal for both strains. Here, columns of 𝐹𝐹𝑖𝑖  

are the normalised probabilities of individual 𝑖𝑖 acquiring strain 1 (non-AMR), and strain 2 

(AMR), at the next time step. The stochastic transmission process therefore proceeds by 

updating non-zero (strain susceptible) elements of Ω(t) according to 

                                         Ω𝑖𝑖,𝑠𝑠(t + 1) = �1, 𝐹𝐹𝑖𝑖,𝑠𝑠(𝑡𝑡) > 𝒰𝒰0,1,
0, otherwise,

     ∀ Ω𝑖𝑖,𝑠𝑠(𝑡𝑡) = 0  
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where 𝒰𝒰0,1 are independent, uniform random variates on [0,1]. Note that this equation 

generates new infections only, such that elements indicating a previous infection with either 

strain remain unaffected at the next time step. Individuals who are newly infected with 

either strain are assigned ‘symptoms’, setting the associated symptoms flag 𝑆𝑆 to 1 with 

probability 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. A proportion 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  of these individuals are further labelled as “symptomatic 

treatment seeking” and are uniquely assigned a random day in the future, selected as 

described in section State variables and scales (see Voluntary treatment seeking). 

Implementation of treatment scenarios 

We study a range of different diagnostic and treatment scenarios, in order to determine 

their relative impact on treatment outcomes, drug usage and resulting strain transmission 

dynamics (see sections Methods and Results in the manuscript). Key inferences are made 

with respect to a reference scenario (REF) which specifies that all individuals who seek 

treatment, or attend for treatment after a recall or trace notification, on a given day, are 

prescribed Ceft. As such, the reference scenario is intended to model the current status of 

gonorrhoea treatment in which present guidelines recommend only Ceft as first-line 

treatment (21). Within this scenario, the AMR status flags for subsequent recall and trace 

notifications are effectively ignored, since treatments are homogeneous and strain 

independent. A positive test result for either strain, albeit delayed by 𝛿𝛿𝛿𝛿, is therefore 

sufficient to issue any relevant notifications. Model parameters for simulations of the 

reference scenario, and all other scenarios unless otherwise specified, are given in Table 

S1 – selected to obtain incidence and prevalence levels within the estimated target ranges 

(see Transmission rate 𝛽𝛽 calibration). 
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Additional scenarios (see section Scenario analysis in the manuscript), are split into three 

categories based on the type of diagnostic treatment strategy employed: 

1. Undirected drug choice: Scenarios (1a) and (1b) consider assignment of drug 

treatments regardless of strain phenotype identification which might otherwise 

inform susceptibility to a particular antibiotic. In these scenarios, symptomatic 

treatment seeking patients, individuals recalled after testing with positive diagnosis 

(either strain), and all notified partners, are treated in an undirected manner with 

either Ceft or Cipr, with fixed likelihood ratio. These scenarios are employed to 

assess the impact of indiscriminate treatment which does not conform with current 

guidelines, as has been previously reported (22). Data obtained from these 

simulations also provides a useful comparison to subsequent scenarios in which off-

guideline treatments, i.e Cipr, are used with discretion, informed by available 

phenotype test results. In scenario (1a), 86% of treatments are randomly assigned to 

be with Ceft, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.86, reflecting the state of recent UK prescribing where 

approximatley 86.5% of new diagnoses were treated according to UK guidelines (22). 

In this model, the remaining 14% of treatments are with Cipr and capture potential 

treatment failures due to resistance. In reality, different drugs or drug combinations 

may be used, for example Ceftriaxone with doxycycline, or Cefixime with 

azithromycin. In scenario (1b) we propose a more exaggerated scenario, in which 

only half of all treatments are with Ceft, where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.5. This allows us to explore 

the impact of mass under-treatment (treatment failures). In this, and all simulated 

scenarios in which treatment with Cipr is possible, any individual 𝑖𝑖 infected with the 

AMR strain and under-treated with Cipr generates a recall notification with an AMR 
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risk flag (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,3 = 1) and will attend for re-treatment after the appropriate delay 

(Δ𝐿𝐿 + Δ𝑅𝑅). 

 

2. Individualised treatment: Scenarios (2a) and (2b) simulate the impact of an idealised 

(100% accurate) point-of-care test and subsequent treatment. In (2a) we consider 

non-discriminatory POCT under which treatment seeking, recalled and traced 

individuals are treated with Ceft (only), if and only if they are infected with either (or 

both) gonorrhoea strains on the day of attendance. In (2b), a discriminatory POCT is 

simulated such that Ceft and Cipr are prescribed according to the infection status of 

the individual – Ceft for individuals with an AMR infection component, and Cipr to 

those who do not. Consequently, in both POCT scenarios, no treatments are given to 

individuals who are uninfected. Scenarios (2c) and (2d), simulate a novel diagnostic 

and treatment regime, individualised in a way that is currently realisable, in which 

laboratory strain phenotype test results (subject to a delay of 𝛿𝛿𝐿𝐿  days) are used to 

make an informed treatment choice. The first implementation (2c) applies this 

strategy only to individuals attending on day 𝑡𝑡 who were recalled for treatment after 

a positive screen for either strain. The default treatment for these individuals, and 

any traced individuals, is Ceft regardless of their actual infection status. If, however, 

any of these individuals have a recall notification, valid on day 𝑡𝑡 which has the AMR 

risk flag set to zero (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,3 = 0), Cipr is prescribed. Specifically, this flag will be 

zero if, on the day of testing, no AMR strain was detected. In scenario (2d), the same 

applies but with additional informed treatment for traced individuals attending on t. 

Once again, the default treatment for these individuals is Ceft, unless the recall and 

trace AMR risk flags are both zero (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,3 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,3 = 0). Here, traced individuals 
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are treated with Cipr providing the associated index case was only infected with the 

non-AMR strain, regardless of what treatment the index case received.  

 

3. Pre-treatment testing: Scenarios (3a)–(3d) simulate variations of previous scenarios, 

with additional degrees of ‘pre-treatment testing’ – where subsets of individuals 

attending for treatment are screened, i.e. tested for infection, prior to receiving 

treatment. The pathway by which these pre-screened individuals receive treatment 

becomes the same as those attending via standard testing and is dependent on any 

subsequent recall notifications generated, thus accruing an additional delay due to 

both the lab test and patient recall delay (Δ𝐿𝐿 + Δ𝑅𝑅). The concept behind these 

treatment scenarios is to address observed patterns of treatment wastage, for 

example by assuming traced contacts to be infected, and treating them regardless of 

whether or not they show symptoms (or, indeed, are infected). Initially in scenario 

(3a) pre-treatment testing is applied only to secondary cases, i.e. traced partners of 

index cases previously found to be infected. In scenario (3b), pre-treatment testing is 

extended to include index cases as well as traced, secondary cases. We note that in 

reality it would be highly unusual for clinicians to await extensive test results before 

treating a patient with obvious symptoms, however this scenario provides an 

interesting comparison to highlight the source of treatment wastage (treatment of 

uninfected individuals). As per the reference scenario, final treatments for (3a) and 

(3b) are exclusively with Ceft. In scenarios (3c-3d), informed discriminatory 

treatment is included as per scenarios (2c) and (2d), with additional pre-treatment 

testing according to (3a) and (3b) above respectively. In these scenarios we 

therefore allow treatment with Ceft as an alternative to Ceft in the depending on 
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strain discriminatory testing results. Specifically, symptomatic and asymptomatic 

individuals who are attending after being recalled due to a positive diagnosis (either 

strain) will be treated according to the strain specificity result of the laboratory test – 

i.e. Cipr when no AMR strain detected. However, in (3c) symptomatic individuals 

who seek treatment prior to any testing results being available will be treated 

according to current guidelines (Ceft). In (3d), all symptomatic treatment seekers are 

pre-screened and therefore can receive strain specific treatment if and when they 

are recalled. In this latter scenario therefore, all individuals are treated according to 

the strain phenotype detected at the time of testing. However unlike with POCT 

scenarios, there are additional laboratory delays prior to treatment during which 

individuals may continue to spread infections within the population. 

 

S2 Model calibration 

 Cumulative partnership networks: mean, median, mode and maximum of 

degree sequence over one year 

Contact network 

In order to validate the dynamical partnership process (see Contact restriction for high-

degree individuals), which periodically shuffles active partnership of high degree individuals, 

we check whether the cumulative structure of the dynamic network converges sufficiently 

on the full partnership ‘annual template’ network. For this analysis, we generated a single 

template network with 𝑁𝑁 = 10,000 nodes, a power-law slope parameter 𝛼𝛼′ = 1.6, and 
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maximum degree 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 120 (see Table S1). Time-integration was achieved by computing 

the element-wise OR operator across the binary adjacency matrices generated with each 

update of the network, over 1 year (365 days) of simulation. Network integration was 

performed for different values of 𝑘𝑘𝑟𝑟, the restricted maximum degree, and the network 

update period 𝜏𝜏𝑟𝑟 with  ⌊365/𝜏𝜏𝑟𝑟⌋ updates per year. The resulting integrated networks are 

compared with the original network (with 𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 120), quantified by their degree 

distribution and power-law slope parameter 𝛼𝛼. Best fit values for 𝛼𝛼 are calculated via a 

maximum likelihood procedure(8). 

In Figure S2, we report the results of tests for restricted networks with maximum degree 

𝑘𝑘𝑟𝑟𝜖𝜖{2,5,10,20,60,120}, with update periods 𝜏𝜏𝑟𝑟𝜖𝜖{1,7,14,30}  days, shown in panels A-D. In 

each example we include the static, unrestricted network with 𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 120 and power 

law slope 𝛼𝛼′ = 1.6 (red) to which we compare the other distributions. 

In panel A, when τr = 1 (daily update), we find the best-fit slope parameter 𝛼𝛼 = 1.60 ±

0.005 to be indistinguishable from the template value α' for all values of 𝑘𝑘𝑟𝑟 ≥ 2. 

Furthermore, each of the 𝑘𝑘𝑟𝑟 degree distributions are found to overlap right up to tail where 

the sharp decrease in gradient indicates finite size effects: truncation at the maximum 

degree 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 120. Even when 𝑘𝑘𝑟𝑟 is as low as 2, daily updates are sufficient to generate an 

annual integrated network which attains the specified maximum yearly contact number, 

with the same scale-free structure parametrised by 𝛼𝛼. However, such rapid updates will lead 

to information being lost between recent partners, particularly affecting contact tracing. 

Simulation speed is also found to be heavily impacted by such frequent re-computation of 

transient network structures. 
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For weekly updates, τr = 7, and highly restricted networks with 𝑘𝑘𝑟𝑟 = 2 − 5 in Panel B, we 

find that partner accumulation over one year is insufficient, for individuals with high degree 

in the full network, to sample all possible partners. This trend continues with fortnightly 

(Panel C) and monthly (Panel D) updates, where we find degree distributions for smaller 

values of 𝑘𝑘𝑟𝑟 to be increasingly truncated with respect to the full network distribution. For 

example, for monthly updates in panel D, highly restricted 𝑘𝑘𝑟𝑟 = 2 networks integrate to a 

maximum degree of only 24, and thus exclude many possible partnerships over the course 

of a year. 

 

 

Figure S2: Degree distribution of restricted sub-networks integrated over 1 year; panels represent different update periods, 

𝜏𝜏𝑟𝑟  (days): (A) 𝜏𝜏𝑟𝑟=1, (B) 𝜏𝜏𝑟𝑟 = 7, (C)  𝜏𝜏𝑟𝑟 = 14, and (D) 𝜏𝜏𝑟𝑟 = 30. Colours indicate different values of 𝑘𝑘𝑟𝑟, the maximum degree 
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of the restricted sub-network. Plotted on log-log axis, the power-law distributions of the degree sequences are 

characterised by a straight line with slope 𝛼𝛼 (dotted line), fitted value as indicated in the legend. 

Across all combinations of 𝑘𝑘𝑟𝑟 and update period 𝜏𝜏𝑟𝑟, we find only minor variation to the 

fitted slope parameter 𝛼𝛼. Largest deviations (up to 𝛼𝛼 = 𝛼𝛼′ + 0.06) are found for highly 

restricted (low 𝑘𝑘𝑟𝑟) networks, exacerbated when the update rate is low (high 𝜏𝜏𝑟𝑟). Integrated 

networks of low maximum degree, derived from the full template, therefore display similar 

scaling behaviour; however, the degree distribution and range become unacceptably 

truncated with respect to the desired final state after one year. 

For each parameter combination, we also computed the mean, median, mode and range of 

the resulting degree sequences. The results are shown in Figure S2 (with red dotted line 

showing the expected result for the full partnership network). From these extra indicators, 

we find that the cumulative degree truncation, due to low 𝑘𝑘𝑟𝑟 and increased 𝜏𝜏𝑟𝑟, is found to 

be largely mitigated for values of 𝑘𝑘𝑟𝑟 ≥ 10. The parameters chosen for this study (𝜏𝜏𝑟𝑟 =

7, 𝑘𝑘𝑟𝑟 = 10) yield excellent agreement to the average (mean/median/mode) contact number 

expected after one year, and reasonable agreement with the maximum contact number, 

while preserving power law slope, and reducing computational effort. 

Figure S3 compares the contact number distribution, resulting from integrated networks 

with 𝜏𝜏𝑟𝑟 = 7, 𝑘𝑘𝑟𝑟 = 10, to available UK survey data for MSM (14). In general, we find 

satisfactory agreement across the ranges specified in the survey apart with the exception of 

surveyed individuals reporting no sexual partners in the previous year. Random, integrated 

networks in our model however yield a very low probability of un-partnered individuals, and 

correspondingly overestimate the proportion who have a single partner. 
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Figure S3: Mean, median, mode and max (columns) of the annual integrated degree distribution, as a function of restricted 

maximum degree 𝑘𝑘𝑟𝑟  (values as in the legend at the bottom of the figure), for different updating periods 𝜏𝜏𝑟𝑟 = 1, 7, 14, 30 

days (rows). 
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Figure S4: Annual contact number over one year as a proportion of MSM population: comparing integrated model contact 

network with update period 𝜏𝜏𝑟𝑟 = 7 and maximum degree 𝑘𝑘𝑟𝑟 = 10 per update (gray bars), with data from (14) 

Transmission rate 𝜷𝜷 calibration 

In what follows we report sensitivity data for selected model parameters with variable 

transmission rate, β, sampling end-of-simulation values for infection prevalence of a single 

(non-AMR) infection strain, and the number of positive diagnosis per day (per 10,000 

individuals). The objectives of this analysis are to determine the relative sensitivity of key 

parameters and, more specifically, to determine a suitable transmission rate which yields 

equilibrium prevalence and diagnosis rates within realistic ranges for the target population 

of MSM in London, U.K. 

Panels in Figure S5 consist of contoured heat-maps in which colour indicates the equilibrium 

prevalence (left column), and positive daily diagnosis rates (right column) – averaged over 

the final 30 days of simulation for each parameter combination. Each row presents this 
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output data for different model parameters on the vertical axis, and transmission rate β 

increasing on the horizontal axis. Regions of parameter space which yield target prevalence 

(3-10%), and daily positive diagnoses (2-5 per 10,000 individuals) are shaded light-blue and 

red respectively. Other parameters, held constant, are as given in Table S1. In order to 

achieve the target prevalence and the number of positive diagnoses simultaneously, we 

overlap the shaded regions in each case (left and right columns in Figure S5) and consider 

the value of 𝛽𝛽 = 0.0022 𝑑𝑑𝑑𝑑𝑑𝑑−1 at the intersection as our fitted value for 𝛽𝛽 in Table S1. 
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Figure S5: Bivariate parameter sensitivity of single strain gonorrhoea transmission model: prevalence (left panels), and 

confirmed positive diagnoses (right panels). From top to bottom we vary: the maximum degree of the restricted sub-

networks 𝑘𝑘𝑟𝑟, the proportion of symptomatic infections 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, tracing efficiency 𝜓𝜓 and the mean untreated infectious 

duration 1/𝑟𝑟, each as a function of the transmission rate 𝛽𝛽. Other parameter values are as per the reference scenario, given 

in Table S1. Superimposed shaded regions indicate parameter space which yields stable target prevalences of between 3-

10% (light blue), and daily positive diagnosis rates between 2-5 per 10,000 individuals (red). 
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