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This supplementary document includes methods related to the calibration of the Regional 

Hydroecological Simulation System (RHESSys) for the two study sites, and for the estimation of 

empirical wind distributions. It also includes supplementary results and figures. 

Supplementary methods 

RHESSys calibration for Santa Fe and HJ Andrews 

RHESSys has ecophysiological parameters such as photosynthesis that are typically assigned based on 

existing species-specific parameter libraries. Physical parameters in RHESSys are also typically specified 

based on input data layers (e.g. DEM). As with most watershed-scale hydrologic models, however, 

subsurface drainage parameters usually need to be calibrated by comparison with observed data (Tague et 

al. 2013; Garcia and Tague 2015). For each watershed, subsurface drainage parameters are optimised by 

comparing observed and modelled streamflow. These models are run using observed historical weather and 

climate data. 

The implementation and calibration of RHESSys for SF has not been previously published, so we 

describe it here. For SF, RHESSys simulations were developed using vegetation and soil type maps from 
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the US Forest Service. Long-term historical climate inputs (1941–2007) included daily minimum and 

maximum air temperature and precipitation taken from two long-term climate stations in the City of Santa 

Fe (National Weather Service Cooperative Network, Santa Fe 1 and 2), scaled to the watershed using 

derived relationships between the Coop climate stations and two short-term SNOTEL stations within the 

watershed (Elk Cabin and Santa Fe). Calibration of subsurface drainage parameters followed the approach 

outlined in Tague and Peng (2013), using the period from 1999 to 2008 and calibrating to daily streamflow 

at USGS Gage 08315480 (Santa Fe River above McClure Reservoir). RHESSys performance for 

streamflow prediction over this 10-year period achieved a daily Nash–Sutcliffe efficiency of 0.7 (where a 

value of 1 corresponds to a perfect fit between observed and modelled streamflow) and mean bias of <5%. 

RHESSys-predicted vegetation dynamics were consistent with remotely sensed vegetation greenness 

indices and local tree-ring measurements. 

The implementation and calibration of RHESSys for HJA used in this study is described in Garcia et al. 

(2013). Streamflow performance metrics show a long-term bias of less than 10%, and Nash–Sutcliffe 

efficiency for daily log-transformed streamflow of 0.85. 

Estimation of empirical wind distributions 

We use empirical wind distributions to estimate probability functions for wind speed and wind direction 

based on local weather station data. For wind speed, we fit the mean and standard deviation of log-normal 

distributions using the fitdistr function in the R statistical package. For wind direction, we fit a mixed von 

Mises circular distribution to each site, with a separate fit for the observed wind direction surrounding the 

two modes of wind direction observed at each site. 
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where p̂  is the proportion of wind observations < π, I0 is the modified Bessel function of order 0, x is the 

wind direction, μi (i = 1,2) is the mean for each mode, and κi (i = 1,2) is a measure of concentration about 

the mean in each mode (higher κi implies a more narrow distribution; Masseran et al. 2013). Estimated 

values for each watershed are given in Table S1. 
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Table S1. Estimated wind parameters for each watershed 

μ1 gives the mean and κ1 a measure of concentration about the mean of the wind direction for the first 

mode of wind direction, and μ2 gives the mean and κ2 a measure of concentration about the mean for the 

second mode of wind direction (radians) 

Watershed 
wind 
parameters 

Mean log 
wind 
speed 

s.d. log 
wind 
speed 

μ1 κ1 μ2 κ2 p̂  

SF 1.64 0.55 1.9 6.43 –1.37 5.1 0.57 
HJA 1.3 0.81 1.03 2.57 –1.74 2.37 0.4 

For WMFire, we adapted the rmixedvm function (CircStats, see https://CRAN.R-

project.org/package=CircStats) to draw a single prevalent wind direction from the bimodal distribution for 

each fire attempt each month, and then we draw from the log-normal distribution to obtain a single 

prevailing wind speed for each fire attempt. 

LANDFIRE data 

LANDFIRE is ‘a shared program between the wildland fire management programs of the US Department 

of Agriculture Forest Service and US Department of the Interior, providing landscape-scale geo-spatial 

products to support cross-boundary planning, management, and operations.’ 

(https://www.LANDFIRE.gov/about.php, accessed 2 March 2017). Its products include presumed 

historical fire regimes that are mapped using the Vegetation Dynamics Development Tool (VDDT). 

We downloaded the fire regime group data layer (LANDFIRE 2014) to compare their presumed fire 

regimes with patterns predicted by WMFire, for each watershed (Table S2, Figs S1–S2). In SF, we see a 

spatial gradient, with increasing fire return interval from the lower to upper watershed, with low- to mixed-

severity fire predicted throughout the watershed. In HJA, the entire watershed is in the fire regime groups 

characterised by fire return intervals >35 years. 
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Table S2. Fire Regime Groups (FRG) layer characterises the presumed historical fire regimes 
within landscapes based on interactions between vegetation dynamics, fire spread, fire effects, and 

spatial context (https://www.LANDFIRE.gov/fireregime.php) 

Characteristics of each fire regime group and the proportion of pixels reported by LANDFIRE in each 

group for each study watershed are given below 

Fire regime 
group 

Characteristics Proportion pixels SF Proportion pixels 
HJA 

1 ≤35-year fire return interval, low and mixed 
severity 

0.41 0.00 

2 ≤35-year fire return interval, replacement severity 0.00 0.00 
3 35–200-year fire return interval, low and mixed 

severity 
0.41 0.52 

4 35–200-year fire return interval, replacement 
severity 

0.16 0.00 

5 >200-year fire return interval, any severity 0.00 0.48 
Other Includes water, snow and ice, barren, sparsely 

vegetated, or indeterminate
0.01 0.00 

 

Fig. S1. LANDFIRE-inferred fire regime group for HJA (see Table S2 for description of each group). Note that 

throughout the watershed, the mean fire return interval is inferred to be >35 years, with spatial heterogeneity only in 

whether that return interval is <200 or >200 years. 
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Fig. S2. LANDFIRE-inferred fire regime group for SF (see Table S2 for description of each group). Note the spatial 

gradient in fire regime group from the lower to upper watershed. At the lower watershed, return intervals are mixed 

between 35 years and between 35 and 200 years. All portions of the lower watershed are inferred to burn at low to 

mixed severity. In contrast, the upper watershed is inferred to burn at a 35–200-year interval with stand-replacement 

severity. 
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RHESSys-predicted fuel load and relative deficit 

RHESSys predicts HJA to have higher fuel loads than SF (Fig. 1 in main manuscript). HJA shows more 

distinct seasonal patterns of deficit than SF (Figs S3–S4). The highest deficit in HJA is predicted in August, 

and the highest deficits in SF are predicted in June and July. 

 

Fig. S3. Relative moisture deficit (1 – ET/PET) by month for HJA. 
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Fig. S4. Relative moisture deficit (1 – ET/PET) by month for SF. 
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Sensitivity of fire regime to ignition source rate 

The season with the highest proportion of successful fire ignitions in each watershed is not sensitive to 

the mean ignition source rate, only the value that proportion takes is sensitive. The ignition source rate is 

the number of ignition sources tested for fire start per month. Figs S5–S10 show this point. 

 

Fig. S5. Seasonality of HJA fire occurrence with an ignition source rate of 0.01. Values are the proportion of times 

each pixel experiences fire. Note the scale – these are the smallest proportions observed for any simulation. 
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Fig. S6. Seasonality of HJA fire occurrence with an ignition source rate of 0.25. Values are the proportion of times 

each pixel experiences fire. Note the scale. 
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Fig. S7. Seasonality of HJA fire occurrence with an ignition source rate of 0.5. Values are the proportion of times 

each pixel experiences fire. Note the scale. 
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Fig. S8. Seasonality of SF fire occurrence with an ignition source rate of 1.0. Values are the proportion of times 

each pixel experiences fire. Note the scale. 
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Fig. S9. Seasonality of SF fire occurrence with an ignition source rate of 1.5. Values are the proportion of times 

each pixel experiences fire. Note the scale. 
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Fig. S10. Seasonality of SF fire occurrence with an ignition source rate of 1.0. Values are the proportion of times 

each pixel experiences fire. Note the scale. 
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