Supplementary Material

Review of emissions from smouldering peat fires and their contribution to regional haze episodes

Yuqi Hu^A, Nieves Fernandez-Anez^{A,B}, Thomas E. L. Smith^{C,D} and Guillermo Rein^{A,E}

^ADepartment of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.

^BDepartment of Fire Safety and HSE Engineering, Western Norway University of Applied Sciences,

Bjørnsons gate 45, 5528, Haugesund, Norway.

^CDepartment of Geography and Environment, London School of Economics and Political Science,

London WC2A 2AE, UK.

^DDepartment of Geography, King's College London, London WC2R 2 LS, UK.

^ECorresponding author. Email: g.rein@imperial.ac.uk

Fig S1. CO EFs from different peat burning emission studies. Peat samples used in literature are classified into two categories: boreal and temperate peat, and tropical peat. According to United Nations geo-scheme, 'NA' refers to Northern America; 'NE' refers to Northern Europe; 'EE' refers to Eastern Europe; 'SA' refers to Southeastern Asia; '#1-6' represents different sampling locations (detailed peat sampling location information is omitted here).

Fig S2. CH₄ EFs from different peat burning emission studies.

Fig S3. HCN EFs from different peat burning emission studies.

Fig S4. NH₃ EFs from different peat burning emission studies.

Fig S5. CO EFs as a function of peat carbon content. With the increase of peat carbon content, CO EFs show an increasing trend. Tropical peat has averagely higher carbon content (56.0%) than boreal and temperate peat (44.2%), thus emits averagely higher CO.

Fig S6. CO_2 EFs as a function of CH₄ EFs. CO_2 and CH₄ EFs of peat fire are poorly correlated (R^2 = 0.237).

Fig S7. CO₂ EFs as a function of HCN EFs. Information regarding the EFs of HCN from both boreal and temperate peat and tropical peat are limited to handful studies. CO₂ and HCN EFs of peat fire are poorly correlated (R^2 = 0.21).

Fig S8. CO₂ EFs as a function of NH₃ EFs. Information regarding the EFs of NH₃ from both boreal and temperate peat and tropical peat are limited to handful studies. CO₂ and NH₃ EFs of peat fire are poorly correlated (R^2 = 0.29).