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Supplementary Methods 

Distribution estimation 

To characterize the distribution of fuel loading for a given vegetation group, Prichard et al. used 

a hurdle estimation procedure because of the large proportion of zeroes for some of the fuel 

loading components. Hereafter, we let xj be the values of fuel loading across all entries for the jth 

fuel component (e.g., 1000-hr fuel loading). The first step in the model is to estimate the 

probability that the fuel load is zero (that fuel is not present). This is estimated as the simple 

proportion of observations that have zero loading for that fuel component. A continuous 

distribution function is then estimated for the set of observations that have greater than zero fuel 

loading (that have crossed the “hurdle”). The density function for the jth fuel component in the kth 

EVG  (fkj(x)) can be written as (Lachenbruch 2002): 

fkj(x,d)= πkj1-d((1-πkj)hkj(x))d, (1)



where h(x) is the estimated continuous distribution function for x>0, d = 1 if x non-zero, 0 if x 0, 

and π is the probability of observing a zero.  

For the continuous portion of each fuel component in each EVT group, (Prichard et al. 2019) 

chose either a lognormal or a gamma distribution (Table S1). The lognormal probability 

distribution function, with parameters μ, σ, is written as: 

ℎ(𝑥𝑥) = 1
𝜎𝜎𝜎𝜎√2𝜋𝜋

𝑒𝑒−
(lnx−μ)2

2𝜎𝜎2 , (2) 

where σx is the standard deviation of ln(x) and μ is the mean of ln(x).  

The gamma probability distribution function, with parameters α, β, is written as: 

ℎ(𝑥𝑥) = 1
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

𝑥𝑥𝛼𝛼−1𝑒𝑒−
𝑥𝑥
𝛽𝛽 . (3) 

For our sensitivity and uncertainty analysis we sampled from the empirical hurdle distributions 

(Table S1) using a 2-part procedure. We let N be the total number of loadings that are sampled. 

First we took a random draw from a binomial distribution where the parameter p is the estimated 

proportion of zero-valued entries for the given fuel component and EVG and n is the number of 

randomly drawn zero entries. We then sampled N-n = m random draws from the estimated 

continuous portion of the distribution (equation 2 or 3, above). All random samples were drawn 

using the R Statistical Package (R Core Team 2017). This method provided samples from the 

independent marginal distributions of each fuel loading component.  

Correlation matrices 

For each EVG and set of target fuel types we estimated a Spearman’s rank correlation matrix 

using only complete cases (only cases for which all variables of interest are entered). We let K be 



the number of fuel types that are targeted for the analysis (e.g., K = 6 for flaming fuel types). The 

matrix X (N x K) was computed by taking N independent samples for each fuel component from 

the best fitting marginal empirical distribution from the fuels database for each EVG. We used 

the matrix method of (Iman and Conover 1982) to approximate a given rank correlation structure 

for sampled input data, resulting in an N x K sampled input matrix X* with correlation structure 

similar to the empirical correlation structure (see supplementary material for details). This 

method prevents combinations of fuels in individual model runs that are not likely to occur in the 

real world. 

We adapt the method of (Iman and Conover 1982) by first estimating Spearman’s rank 

correlation structure on the group of fuel types for the test case EVT groups, using only complete 

cases to estimate the correlation matrix (only cases for which all variables of interest are 

entered). Let C be the empirical correlation matrix (KxK).  P’ is the Cholesky factorization of C 

(generated by the R chol function), and P is the transpose of the resulting matrix.  

Define the scores a(i) (i=1,…,N): 

𝑎𝑎(𝑖𝑖) =  Φ−1 �
𝑖𝑖

𝑁𝑁 + 1
�, 

Where Φ-1 is the inverse of the standard normal cumulative distribution function. Then we create 

a new NxK matrix R, where each column is an independent random sample (without 

replacement) from the vector of scores A (comprised of a(i) above). We then generate the matrix 

R* as RP’. The matrix R* will have a rank correlation structure similar to C.  

To reduce the variability in the correlation in the sampled data input matrix, a new matrix 

correlation matrix (T) is generated as the Spearman rank correlation matrix for the matrix R*. 

We then calculate Q’ as the Cholesky factorization of T, with Q the transpose of Q’. We solve 



for the matrix S = PQ-1, and 𝑅𝑅𝑏𝑏∗  = RS’. We then rearrange each column in the sampled data input 

matrix X to match the rankings in the matrix 𝑅𝑅𝑏𝑏∗ . For example, if the first row in 𝑅𝑅𝑏𝑏∗  is the 5th 

ordered statistic, then we place the 5th ordered statistic for that column in X in the first row (call 

the resulting matrix X*). This preserves the overall marginal distribution for each column X*, 

while approximating the rank correlation structure across each row in X*.  

Sensitivity indices 

To calculate the Sobol sensitivity indices, we used the sobolEff function in the R sensitivity 

package (Pujol et al. 2017) where a higher value implies that the model is more sensitive to that 

input. To calculate the Sobol sensitivity index the sampled N x K matrix X* was divided into two 

new (N/2) x K matrices, X1 and X2, where X1 is the first N/2 rows in X* and X2 is the last N/2 

rows in X*. The sobolEff function then rearranged the X1 and X2 to create a new data input 

matrix by exchanging the columns in X1 and X2. This matrix rearrangement is necessary to use 

sampled data to estimate the Sobol sensitivity indices (Saltelli et al. 2010). The first-order Sobol 

sensitivity index characterizes the main effect of each fuel input averaged over the variability in 

the other fuel inputs. The total sensitivity index ranks the contribution of each variable to the 

variability in model predictions, including all interactions among the variables. Here we 

calculated both first-order and total sensitivity indices. 

After Sobol rearrangement, the rank correlation structure of the final data input matrix had a 

poorer approximation of the original correlation matrix (C) than the original matrix X*, and 

variance partitioning may not provide valid partitions in the case of correlated inputs (Jacques et 

al. 2006). We ranked the inputs by their importance in variance partitioning. 

 



 

Table S1. Distributions and associated parameters for each EVG in the analysis, from Prichard et al. (2019) 

EVG Douglas-Fir 
Ponderosa Pine 
Lodgepole Pine (625) 

Ponderosa Pine 
Forest (631) 

Beech Maple 
Basswood (655) 

Lodgepole Pine 
Forest and 
Woodland (622) 

Ponderosa Pine 
Forest (631) 

Spruce-Fir Forest 
and Woodland 
(639) 

1hr gamma(1.2,1.55) 
0.04 

lnorm(-1.96,1.45) 
0.08 

gamma(1.96,14.8) 
0.01 

0.90 0.22 1.12 

10hr gamma(1.50,0.46) 
0.01 

gamma(1.33,0.55) 
0.02 

gamma(2.36,1.79) 
0.02 

4.93 3.36 2.24 

100hr gamma(1.74,0.28) 
0.06 

gamma(1.52,0.32) 
0.12 

lnorm(1.29,0.73) 
0.12 

6.27 3.36 4.48 

Herb gamma(1.36,3.69) 
0.01 

gamma(1.44,2.79) 
0.01 

gamma(1.54,2.78) 
0.03 

0.45 0.11 0.67 

Litter gamma(1.56,0.15) 
0.01 

gamma(1.55,0.18) 
0.003 

gamma(3.05,0.31) 
0.02 

1.67 3.41 0.73 

Shrub gamma(1.15,0.55) 
0.02 

gamma(1.99,0.93) 
0.10 

gamma(1.87,1.05) 
0.12 

0.00 0.00 6.42 

SCWD 0.90 17.92 6.72 lnorm(1.43,1.50) 
0.204 

lnorm(1.72,1.26) 
0.37 

lnorm(2.06,1.13) 
0.21 

RCWD 0.90 6.72 1.12 gamma(0.91,0.067) 
0.314 

lnorm(1.53,1.33) 
0.49 

gamma(1.28,0.14) 
0.39 

Duff 16.76 22.85 16.13 gamma(1.46,0.069) 
0.027 

gamma(1.07,0.07) 
0.04 

gamma(1.51,0.06) 
0.01 

 



Table S2. 95% prediction intervals (Mg ha-1) when flaming fuels were sampled.  

EVG mod Env var lower upper 
622 Consume 80 PM25F+S 0.26 0.78 
622 Consume 97 PM25F+S 0.3 0.82 
622 FOFEM 80 PM25F+S 0.25 0.98 
622 FOFEM 97 PM25F+S 0.29 1.01 
622 Consume 80 CO2F+S 29.22 86.28 
622 Consume 97 CO2F+S 33.42 90.81 
622 FOFEM 80 CO2F+S 28.05 108.67 
622 FOFEM 97 CO2F+S 32.36 111.84 
622 Consume 80 COF+S 1.8 5.32 
622 Consume 97 COF+S 2.06 5.6 
622 FOFEM 80 COF+S 1.73 6.7 
622 FOFEM 97 COF+S 2 6.9 
631 Consume 80 PM25F+S 0.43 0.86 
631 Consume 97 PM25F+S 0.48 0.9 
631 FOFEM 80 PM25F+S 0.52 1.17 
631 FOFEM 97 PM25F+S 0.65 1.26 
631 Consume 80 CO2F+S 47.95 94.97 
631 Consume 97 CO2F+S 52.75 99.96 
631 FOFEM 80 CO2F+S 58.09 130.21 
631 FOFEM 97 CO2F+S 72.72 139.5 
631 Consume 80 COF+S 2.96 5.86 
631 Consume 97 COF+S 3.25 6.16 
631 FOFEM 80 COF+S 3.58 8.03 
631 FOFEM 97 COF+S 4.48 8.6 
639 Consume 80 PM25F+S 0.23 0.48 
639 Consume 97 PM25F+S 0.26 0.51 
639 FOFEM 80 PM25F+S 0.23 0.53 
639 FOFEM 97 PM25F+S 0.28 0.57 
639 Consume 80 CO2F+S 26.08 54.13 
639 Consume 97 CO2F+S 29.49 57.5 
639 FOFEM 80 CO2F+S 25.42 58.94 
639 FOFEM 97 CO2F+S 31.49 63.79 
639 Consume 80 COF+S 1.33 2.76 
639 Consume 97 COF+S 1.5 2.93 
639 FOFEM 80 COF+S 1.3 3.01 
639 FOFEM 97 COF+S 1.61 3.25 

   



Table S3. 95% prediction intervals (Mg ha-1) when smoldering fuels were sampled. 

EVG mod Env var lower upper 
622 Consume 80 PM25F+S 0.16 1.01 
622 Consume 97 PM25F+S 0.17 1.05 
622 FOFEM 80 PM25F+S 0.21 1.68 
622 FOFEM 97 PM25F+S 0.22 1.74 
622 Consume 80 CO2F+S 17.9 112.02 
622 Consume 97 CO2F+S 18.87 116.72 
622 FOFEM 80 CO2F+S 23.21 186.45 
622 FOFEM 97 CO2F+S 24.1 193.22 
622 Consume 80 COF+S 1.1 6.91 
622 Consume 97 COF+S 1.16 7.2 
622 FOFEM 80 COF+S 1.43 11.5 
622 FOFEM 97 COF+S 1.49 11.92 
631 Consume 80 PM25F+S 0.11 0.81 
631 Consume 97 PM25F+S 0.11 0.85 
631 FOFEM 80 PM25F+S 0.13 1.39 
631 FOFEM 97 PM25F+S 0.13 1.45 
631 Consume 80 CO2F+S 12.14 90.34 
631 Consume 97 CO2F+S 12.24 94.23 
631 FOFEM 80 CO2F+S 14.56 154.27 
631 FOFEM 97 CO2F+S 14.84 161.36 
631 Consume 80 COF+S 0.75 5.57 
631 Consume 97 COF+S 0.76 5.81 
631 FOFEM 80 COF+S 0.9 9.51 
631 FOFEM 97 COF+S 0.92 9.95 
639 Consume 80 PM25F+S 0.19 1.37 
639 Consume 97 PM25F+S 0.21 1.42 
639 FOFEM 80 PM25F+S 0.2 2.37 
639 FOFEM 97 PM25F+S 0.2 2.44 
639 Consume 80 CO2F+S 20.79 152.18 
639 Consume 97 CO2F+S 22.89 157.55 
639 FOFEM 80 CO2F+S 21.75 263.56 
639 FOFEM 97 CO2F+S 22.53 271.24 
639 Consume 80 COF+S 1.28 9.39 
639 Consume 97 COF+S 1.41 9.72 
639 FOFEM 80 COF+S 1.34 16.25 
639 FOFEM 97 COF+S 1.39 16.73 

 

  



 

Figure S1. Empirical fuel loading distributions (middle 95%) for fuels assumed to be involved in 
the flaming phase of combustion. Prop 0 gives the proportion of entries with zero value. EVGs 
are Douglas-Fir Ponderosa Pine Lodgepole Pine (625), Ponderosa Pine Forest (631), Beech 
Maple Basswood (655).    



 

Figure S2. Empirical fuel loading distributions (middle 95%) for fuels assumed to be involved in 
the smoldering phase of combustion. Prop 0 gives the proportion of entries with zero value. 
EVGs are Lodgepole pine forest and woodland (622), Ponderosa pine forest (631), Spruce-fir 
forest and woodland (639). 

  



 

Figure S3. Proportion consumed with increased fuel loading, flaming fuels.  



 

Figure S4. Proportion consumed with increased fuel loading, smoldering fuels.  
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