Supplementary material for

Soil moisture thresholds for combustion of organic soils in western Tasmania

Lynda D. Prior^A, Ben J. French^A, Kathryn Storey^B, Grant J. Williamson^A and David M.J.S.

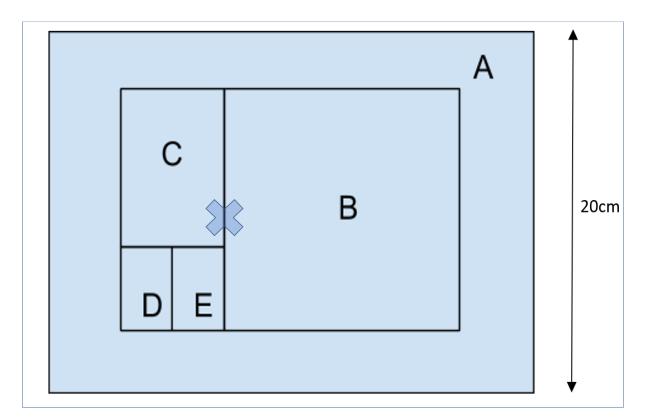
Bowman^A

^ASchool of Natural Sciences, University of Tasmania Private Bag 55, Hobart, Tasmania

7001, Australia

^BNatural and Cultural Heritage Division, Department of Primary Industries, Parks, Water and

Environment, GPO Box 44, Hobart, Tasmania 7001


^CCorresponding author. Email: lynda.prior@utas.edu.au

Rainforest/mixed forest on a south facing slope north of the sentinel Range. Note the charred root wads, and the lack of charring on the trunks indicating that ground fire destroyed the soil in an area which had not been exposed to surface fire.

Melaleuca swamp near Arthur River. Note the depth of soil loss. This swamp smouldered for several weeks despite extensive suppression efforts, including the application of approximately 400,000 litres of water (8 milk tanker loads).

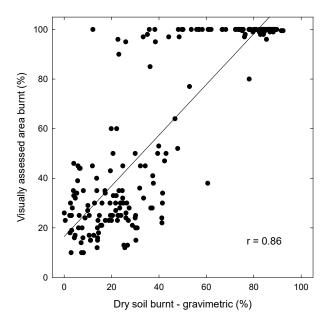

Fig. S1. Examples of the impacts of ground fires in Western Tasmania from the 2016 fires. These fires occurred under unusually dry soil conditions, and there were numerous instances of smouldering ground fires becoming established. Photos: Ben French

Fig. S2. Schematic diagram showing the division of each peat turf in plan view. First, VMC was measured by inserting the probe at the position marked by the cross. Part A was then discarded. Block B was used for burn testing, Block C to measure gravimetric moisture content and bulk density, Block D, organic content, and Block E, for elemental carbon and nitrogen analyses.

Fig. S3. Custom-built burn boxes ($10 \times 10 \times 7 \text{ cm}$), with soil Block B inside and coil heater inserted, held in place with a G-clamp.

Fig. S4. The relationship between visually assessed area burnt (%) and gravimetrically determined mass of dry soil burnt (%).

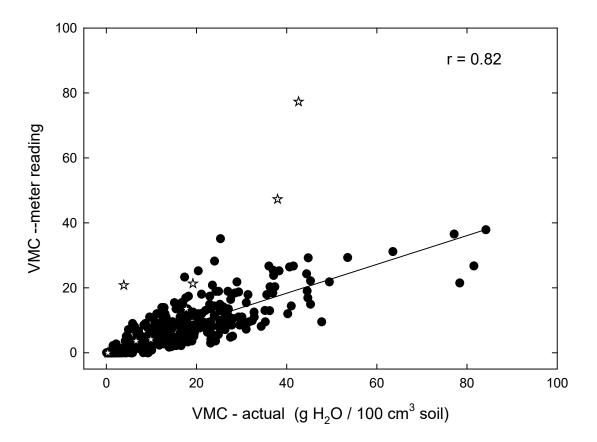
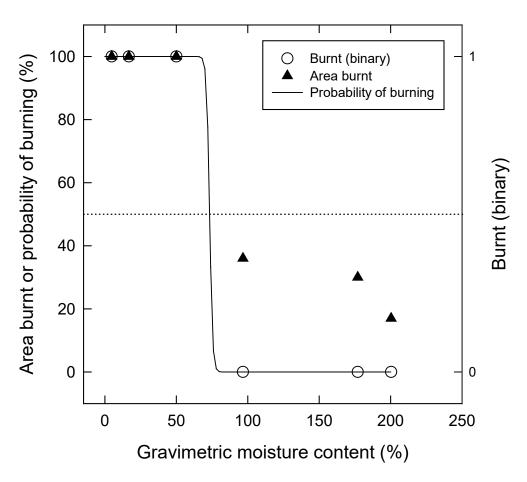
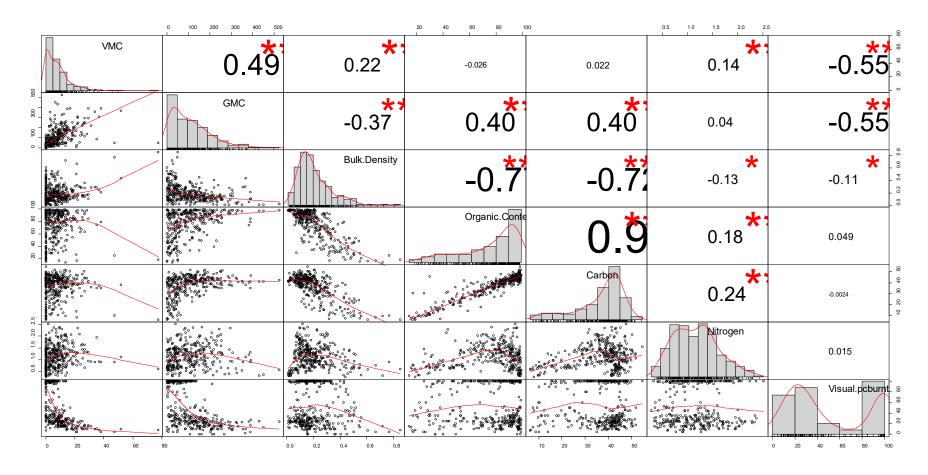




Fig. S5. Calibration of the VMC meter against VMC_{actual}. The open stars are samples from sites where soils were considered inorganic (average carbon content <12%); these were not used in the calibration. For our organic soils, the equation to convert from VMC_{meter} readings to VMC_{actual} is: VMC_{actual} = $4.67 + 1.500 * VMC_{meter}$.

Fig. S6. Example of how area burnt varied as a function of gravimetric moisture content (GMC) for an individual site. Area burnt was converted to a binary variable 'Burnt' (0 if <50% burnt, 1 if \geq 50% burnt) to model the probability of burning (solid line). In this example, a 50% probability of burning (dotted line) corresponded to GMC of 73.3%.

Fig. S7. Correlation coefficients and scatterplots describing the relationships among soil variables. Cells on the diagonal contain frequency histograms for the variables: VMC (volumetric moisture content) is the VMC meter reading; GMC is gravimetric moisture content (%); Bulk.Density is soil bulk density (g cm⁻³); Soil Organic.Content, Carbon and Nitrogen are in %, and Visual.pcburnt is percentage burnt (visually assessed). Values above and to the right of the diagonal are correlation coefficients, with *, ** and *** denoting P < 0.05, 0.01 and 0.0001, respectively. Absence of asterisks indicates non-significant correlations. Panels below and to the left of the diagonal contain scatterplots. Data are presented for all turves, including sites with mineral soils. This figure was produced using the R package 'PerformanceAnalytics' (Peterson and Carl 2014).

1 Table S1. Effect of adding other soil terms to the moisture models (GMC and

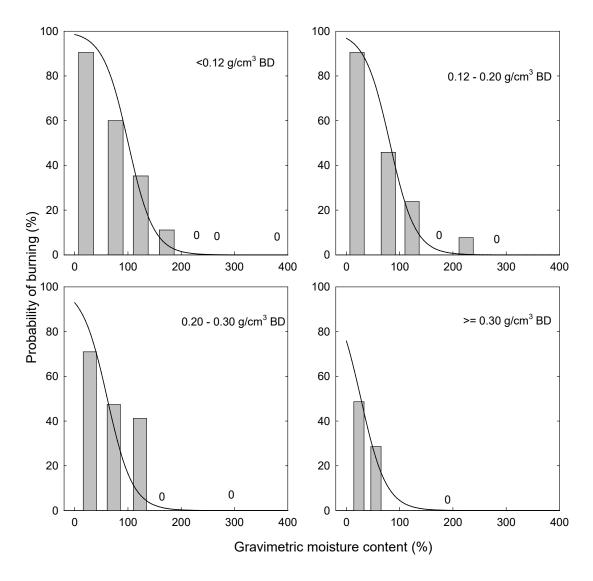
2 VMC_{meter}), with 'burnt' as a binomial response variable and Site as a random effect.

- 3 Terms with AICc more than two below the moisture only models were considered to have
- 4 statistical support, and are shown in **bold**. Only samples with valid observations for all

Moisture term	GMC			VMC _{meter}			
	AICc	ΔAICc	% deviance	AICc	ΔAICc	% deviance	
Additional term			explained			explained	
Moisture only	260.8	23.7	46.6	265.3	0	47.2	
+organic content	242.6	5.5	51.3	267.1	1.8	48.3	
+BD	237.1	0	50.9	267.3	2.0	46.9	
+C	252.1	15.0	48.3	267.2	1.9	46.8	
+N	262.6	25.4	46.8	265.4	0.1	46.4	

5 variables were used for this comparison (n = 282)

6


8 Table S2. Parameter estimates for the best supported binomial GLMMs describing the

9 probability of burning, with a logit link and Site as a random effect.

- 10 Adding organic content or BD to the improved the GMC model, but not the VMC_{meter} one.
- 11 All valid observations for organic soils were used in fitting these models.
- 12

Term	Estimate	Standard	Deviance explained by the	n			
		error	model (%)				
Burnt ~ GMC + organic content							
Intercept	-0.9175	0.889	52.5	307			
GMC	-0.0425	0.0070					
organic content	0.0513	0.0136					
Burnt ~ GMC + BD							
Intercept	5.0254	0.9328	51.7	307			
GMC	-0.0419	0.0067					
BD	-10.143	2.419					
$Burnt \sim VMC_{meter}$							
Intercept	2.1266	0.4136	52.2	335			
VMC _{meter}	-0.4194	0.0660					

13

15 16

17 Fig. S8. Probability of burning in relation to soil gravimetric moisture content (GMC) and

18 bulk density (BD). Lines show model predictions, and bars show actual data. For

19 presentation, data are binned into 50%-GMC classes; classes with <5 observations were

20 combined. The GMC corresponding to a 50% probability of burning is 100, 82, 61 and 27%,

21 respectively, for the four BD classes.

23 Table S3. Average soil characteristics for each broad vegetation type.

24 Change in AICc is the change when the term 'vegetation type' was added to the null

25 (intercept only) model; a decrease >2 (in bold) was regarded as indicating support for

26 differences among vegetation types. Only the nine vegetation types represented by four or

27 more sites were included in the analyses, which used generalised linear mixed effects models

- 28 with Site as a random effect.
- 29

Vegetation type	Number	Organic	Soil	Soil	Bulk density			
	of sites	content	carbon	nitrogen	$(g \text{ cm}^{-3})$			
		(%)	(%)	(%)				
Vegetation types compared in our analyses								
Alpine low vegetation	8	79.9	37.5	1.47	0.142			
Eastern moorland	4	85.8	40.0	1.20	0.211			
Leptospermum								
rainforest	4	85.9	42.6	0.91	0.153			
Melaleuca swamp	5	68.3	33.1	1.34	0.220			
Mixed forest	4	87.6	39.8	1.08	0.186			
Moorland	7	69.7	35.8	1.05	0.296			
Rainforest	6	76.9	36.9	1.19	0.189			
Scrub	9	64.2	32.4	1.06	0.263			
Sphagnum	4	94.0	41.9	0.84	0.052			
Change in AICc		-47	-29	+16	+29			
	Not co	ompared- insu	fficient sites	5				
Coastal lagoon	1	20.3	8.8	0.81	0.656			
Coastal lawn	1	90.0	35.3	2.04	0.284			
Cushion	3	87.9	44.0	0.62	0.120			
Pencil pine	1	91.7	42.9	1.57	0.134			
Poa	2	59.1	26.1	1.02	0.273			
Wet forest	3	75.3	37.0	1.40	0.240			
Wetland	1	66.7	30.3	1.44	0.175			
Overall	63	75.8	36.5	1.16	0.208			

31 Table S4. Contingency table showing accuracy of combustibility classifications, in relation to the

- 32 specified probabilities of combustion.
- 33 The probability of combustion was predicted according to the equation: logit(probability)= 2.127-
- 34 0.41944*VMC_{meter}. The number of correct predictions of combustion (from a total of 334 samples) is
- 35 shown in the highlighted columns. With a very conservative classification, namely that samples
- 36 with >1% probability of combustion are 'combustible', most samples were classed as 'combustible',
- 37 but only one of these actually burned. With the 50% probability used as the moisture threshold, there
- 38 was a greater overall accuracy, but more 'non-combustible' samples burned.
- 39

40	

Threshold	VMC _{meter}	'Non-combustible'		'Combustible'		Correctly
probability of		Number that	Number that	Number that	Number that	classified
burning to be		did not burn	burned	did not burn	burned	(%)
classed as						
'combustible'						
1%	16.0	40	1	154	139	54
5%	12.1	68	4	126	136	61
10%	10.3	92	7	102	133	67
20%	8.4	124	11	70	129	76
50%	5.1	155	37	39	103	77

41