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Fig. S1. Effect of time series standardisation over a difference Normalized Burn Ratio (dNBR) image of the year 

2006 (section). A big fire can be observed in the upper right corner of the images. (1a) standardised dNBR; (2a) 

dNBR; (1b) binary standardised dNBR with the threshold set at 3 s.d. from the mean; (2b) binary dNBR with the 

threshold set to match the detected fire shape of quadrant 1b. This figure shows how standardisation produces less 

noisy images, allowing for a better definition of the threshold separating burned from unburned pixels. In the image 

2b, several noisy pixels can be seen at the bottom and left sides of the image. 
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Fig. S2. Producer’s Accuracy (PA) and User’s Accuracy (UA) of the detection of fire events at different 

burned/unburned threshold cuts. Blue lines represent accuracy when setting thresholds after image differencing in 

Phase 2 (PA ID and UA ID). Orange lines represent accuracy when setting thresholds (grouping classes) after 

Random Forests classification in Phase 3 (PA RF and UA RF). RF classification allows a significant accuracy 

improvement over a simple image difference thresholding, especially in terms of User’s Accuracy (reduction of 

commission error). 

 
 
 

Table S1. Spatiotemporal Spearman correlation between MCD14ML Active Fire hotspots and the present study’s 
resulting dataset (centroids). The correlation is based on a 10 × 10-km validation grid drawn within the study region 

 d.f. (n–2) Rho P value 
2001 428 0.21 <0.001 
2002 428 0.16 0.001 
2003 428 0.48 <0.001 
2004 428 0.33 <0.001 
2005 428 0.27 <0.001 
2006 428 0.38 <0.001 
2007 428 0.54 <0.001 
2008 428 0.12 0.011 
2009 428 0.30 <0.001 
2010 428 0.66 <0.001 
2014 428 0.43 <0.001 
2015 428 0.48 <0.001 
2016 428 0.24 <0.001 
2017 428 0.33 <0.001 
2018 428 0.15 0.002 
Total 428 0.39 <0.001 
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Fig. S3. Example of fast vegetation recovery after burn. Dates are in Year_DayOfYear format. The first and last 

Landsat false-colour composites are the reference scenes used in the time series, while the second and third scenes 

have been added for analysis. The fire occurred and vegetation recovered between the two reference dates, leaving 

almost no spectrally detectable trace. 
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