Supplementary Material

Improved laboratory method to test flammability metrics of live plants under dynamic conditions and future implications

Timothy S. Miller^{A,B}, Alexander I. Filkov^{A,C,*} and Trent D. Penman^A

^ASchool of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Vic. 3363, Australia

^BDepartment of Environment, Land, Water and Planning, 8 Nicholson Street, East Melbourne Vic. 3002, Australia

^CBushfire and Natural Hazards Cooperative Research Centre (CRC), Melbourne, Vic. 3002, Australia

*Correspondence to: Email: <u>alexander.filkov@unimelb.edu.au</u>

Supplementary Appendix S1

Calculation method of bulk volume

Bulk volume of each sample V_{bulk} was obtained by calculating a sector of volume of a solid of revolution. A solid of revolution is a solid 3D figure obtained by rotating a plane curve around the axis of revolution (*x* axis in our particular case). To do so we required to characterize the geometry of our samples. Figure S1 shows side and front views for *Acacia, Cassinia* and *Pinus* samples. Volume of Bark samples was calculated as the volume of parallelepiped.

Figure S1. Geometry of sample: (*a*) side view and (*b*) front view. Where $y_1 = f_1(x)$ and $y_2 = f_2(x)$ are the rotation curves; x_1 and x_2 are the sample dimensions; R is radius of the sample base; L₁ is length of the base sector (blue line).

The volume of the solid V (hatched area) formed by rotating the area between the curves $y_1 = f_1(x)$ and $y_2 = f_2(x)$ and the lines $x=x_1$ and $x=x_2$ about the x-axis can be calculated using the following equations:

$$V = V_1 - V_2$$
, (S1)

$$V_1 = \pi \int_{x_1}^{x_2} f_1^2(x) dx, \ V_2 = \pi \int_{x_1}^{x_2} f_2^2(x) dx,$$
(S2)

$$V = \pi \int_{x_1}^{x_2} f_1^2(x) dx - \pi \int_{x_1}^{x_2} f_2^2(x) dx$$
(S3)

where V_1 and V_2 are the volumes of 3D shapes obtained by rotating y_1 (red outline) and y_2 (green outline) around the axis x.

To calculate volumes firstly we need to define the two functions $y_1 = f_1(x)$ and $y_2 = f_2(x)$ (Figure S1) that best describe the approximate sample shape for each species (except Bark). To do this, the software GetData Graph Digitizer version 2.26.0.20 (Federov 2002-2013) was used. Twenty points along each curve of the sample shape were selected, using an image of the approximated sample shape and the mean sample dimensions for each species as inputs.

Using obtained points from GetData Graph Digitizer and R version 3.6.0 (R Core Team 2019) the following function describing the sample shapes was defined:

$$f(x) = A_0 + A_1 x + A_2 x^2 + A_3 x^3 + A_4 x^4,$$
(S4)

where A_0, A_1, A_2, A_3 and A_4 are constants.

Table S1A shows constants and input parameters to calculate volume using equation (S4).

	Acc	icia	Cass	sinia	Pinus ¹
	y_1	y_2	y_1	y_2	y_1
x ₁ , mm	0	0	0	0	0
x ₂ , mm	371 (33)	371 (33)	391 (17)	391 (17)	192 (20)
A0	7.17493	0.66667	7.99923	0.28603	-1.27196
A1	2.1538	0.51173	1.82949	0.26486	1.31424
A2	0.01295	0.00331	0.01101	0.00162	-0.0149
A3	3.98E-05	1.06E-05	3.32E-05	5.00E-06	9.86E-05
A4	-4.88E-08	-1.54E-08	-3.94E-08	-7.08E-09	-2.43E-07

 Table S1. Input parameters.

¹*Pinus* has data only for y_1 due to y_2 =0 for all samples. Values in round brackets are standard deviation.

Using functions $y_1 = f_1(x)$ and $y_2 = f_2(x)$ defined for the sample shape for each species, the dimensions of the samples and the equation (S3), the volume of 3D shape V for each species (except Bark) can be calculated.

To calculate volume of the sector V_{bulk} we used the following approach. We calculated circumference *C* of the 3D base first and then proportion of it occupied by the sample:

$$L = 2\pi R, \tag{S5}$$

$$S = \frac{L_1}{c},\tag{S6}$$

$$V_{bulk} = VS, \tag{S7}$$

where S is the proportion of 3D figure representing sample.

 V_{bulk} for Bark was calculated using the equation (S8) below. Length (L), width (W) and depth (D) measurements were taken from the mean dimension calculations.

$$V_{bulk} = LWD \tag{S8}$$

Calculated values are presented in Table S2.

Table S2. Calculated parameters.

Species	Mean R (SD), mm	Mean C (SD), mm	Mean L ₁ (SD), mm	Mean V (SD), m ³	Mean S (SD)	Mean V _{bulk} (SD), m ³
Acacia	165 (70)	1039 (441)	249 (56)	0.0222 (0.0022)	0.29 (0.14)	6.49E-03 (3.45E-03)
Cassinia	139 (57)	874 (361)	132 (31)	0.0179 (0.0007)	0.18 (0.08)	3.12E-03 (1.37E-03)
Pinus	-	-	-	0.0023 (0.0001)	1	2.31E-03 (1.17E-04)
Bark	-	-	-	-	-	9.81E-05 (1.75E-05)

R is the radius of the sample base; SD is the standard deviation; C is the circumference of the 3D base; L_1 is length of the base sector; V is the volume of a solid of revolution; S is the proportion of 3D figure representing sample; V_{bulk} is the bulk volume of a sample; length (L), width (W) and depth (D) for bark were 192 (20) mm, 53 (6) mm, 10 (2) mm respectively.

Supplementary Appendix S2

Species	Mean Time to Fa	alse Ignition (sec)
Species	Static	Dynamic
Acacia	12.4 ± 9.7 (<i>n</i> =10)	111 ± 103 (<i>n</i> =9)
Cassinia	2.8 ± 3.8 (<i>n</i> =10)	5.9 ± 13.9 (<i>n</i> =9)
Pinus	1.9 ± 2.9 (<i>n</i> =10)	3.4 ± 5.2 (<i>n</i> =10)
Bark	1 (<i>n</i> =2)	9.6 ± 8.7 (<i>n</i> =5)

Table S3. Mean time to false ignition in piloted experiments. Sample size (*n*) is also shown.

Supplementary Appendix S3

Table S4. Comparison of models for the ignition success, time to flammability measure and radiantexposure to flammability measure

Response variable/	Model 1	Model 2	Model 3
Model	Spp+Exp+Pilot	Spp*Exp+Spp*Pilot+Exp*Pilot	Spp*Exp*Pilot
Ignition success, AIC	111	119	123
Time to reach pyrolysis, AIC	527	372	304
Radiant exposure to reach pyrolysis, AIC	547	391	312
Time to reach smouldering, AIC	302	246	234
Radiant exposure to reach smouldering, AIC	317	288	275
Time to ignition, AIC	228	178	182
Radiant exposure to ignition, AIC	246	218	222
Time to reach complete consumption, AIC	85	92	96
Radiant exposure to reach complete consumption, AIC	126	131	135

Spp is the species under the study (*Acacia, Cassinia, Pinus* and *Bark*), Exp is the type of the heating regime (static or dynamic), Pilot is the ignition method (piloted or unpiloted)

Supplementary Appendix S4

Table S5. Summary of results showing median time (sec) required for each species and bark to reach pyrolysis, smouldering, flaming ignition, complete consumption and the median consumption time (sec).

		Acc	icia,		Cassinia,					Piı	nus,		Bark,				
Elammability moacura		Mediar	n (MAD)		Median (MAD)					Media	n (MAD)		Median (MAD)				
Flammability measure	Unpiloted		P	iloted	Unpiloted		Piloted		Unpiloted		Piloted		Unpiloted		Piloted		
	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	
Purolucia	16	2/17 (12)	2 (2)	208 (60)	6 (2)	271 (20)	1 (NA)	1 (NA)	48	162 (10)	1 (NA)	1 (NA)	1 (NA)	120 (17)	1 (NIA)	130	
F yl Olysis	(2)	547 (12)	5(2)	308 (09)	0(2)	271 (20)	1 (NA)	I (NA)	(6)	402 (40)	1 (NA)	1 (NA)	1 (NA)	128 (17)	I (NA)	(31)	
Smouldoring	25	180 (22)	22	210 (21)	12 (2)	112 (22)	11 (1)	150 (04)	57	515 (0)	48 (10)	278 (82)	1 (2)	19/ (12)	2 (1)	171	
Sinouldering	(3)	480 (22)	(6)	519 (81)	13 (3)	443 (32)	11 (4)	130 (94)	(6)	515 (9)	48 (10)	378 (83)	4 (2)	104 (12)	2(1)	(27)	
Elaming ignition	85	580 (NA)	36	210 (21)	18 (7)	ART (A1)	20	150	102	558 (21)	72 (24)	422	7 (1)	275 (22)	2 (1)	198	
	(NA)	389 (NA)	(8)	319 (01)	40(7)	467 (41)	(7)	(93)	(7)	330 (31)	75 (54)	(146)	/(1)	273 (32)	5(1)	(25)	
Complete consumption	117		87	393	02 (24)	EG2 (26)	CE (20)	407 (CE)	137	E74 (27)	141		118	122 (22)	66 (6)	306	
Complete consumption	(NA)	600 (NA)	(19)	(135)	82 (24)	502 (50)	05 (28)	497 (05)	(23)	574 (27)	(20)	555 (47)	(12)	455 (25)	00 (0)	(20)	
Consumption time	32	11	59	48	16	12	50	198	22	16	46	44	111	86	62	97	
	(NA)	(NA)	(55)	(23)	(7.4)	(4.5)	(34)	(173)	(13)	(6)	(37)	(50)	(22)	(59)	(8.2)	(21)	

NA (not applicable) is for experiments with one successful ignition. MAD is the median standard deviation (sec).

Table S6. Summary of results showing median radiant exposure H_e (kJ/m²) required for each species and bark to reach pyrolysis, smouldering, flaming ignition, complete consumption and the median consumption H_e (kJ/m²).

		Aca	cia,			Cass	inia,			Pin	us,		Bark,			
		Median	(MAD)		Median (MAD)					Median	(MAD)		Median (MAD)			
Flammability measure	Unpiloted		Piloted		Unpiloted		Pilo	Piloted		Unpiloted		oted	Unpiloted		Piloted	
	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
Purolucia	1008	5119	189	4266	378 (95)	3540	63 (NA)	9 (NA)	3024	8517	63 (NA)	9 (NA)	63 (NA)	1351	63 (NA)	1376
Pyrolysis	(126)	(266)	(126)	(1405)		(369)			(347)	(1365)				(211)		(377)
Smouldering	1544	9187	1355	4498	788 (158)	7843	693 (252)	1648	3560	10650	2993	5935	221 (95)	2103	95 (32)	1924
Smouldering	(158)	(841)	(347)	(1725)		(1033)		(1118)	(347)	(397)	(630)	(2500)		(177)		(394)
Flaming ignition	5355 (NA) 14544	2268	4498	2993	9460	1260	1648	6426	12843	4568	7163	410 (32)	3605	189 (63)	2318
Flaming Ignition		(NA)	(504)	(1725)	(410)	(1516)	(410)	(1113)	(441)	(1640)	(2111)	(4720)		(572)		(391)
Complete consumption	7371 (NA	15232	5481	6403	5166	12982	4095	9870	8631	13710	8883	12605	7403	7498	4127	4224
complete consumption		(NA)	(1197)	(3098)	(1512)	(2122)	(1764)	(3113)	(1449)	(1522)	(1260)	(2755)	(756)	(728)	(378)	(427)
Consumption //	2016	688	3717	1098	1008	419	3150	5883	1386	867	2898	924	6962	2087	3874	1867
Consumption H _e	(NA)	(NA)	(3456)	(684)	(467)	(76)	(2148)	(4580)	(841)	(175)	(2335)	(657)	(1354)	(985)	(514)	(521)

NA (not applicable) is for experiments with one successful ignition. MAD is the median standard deviation (kJ/m²).

Table S7. Median time and radiant exposure required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: n is not significant (p>0.05), * is suggestive (0.05 \ge p>0.005), ** is significant (0.005 \ge p>0.0001), *** is highly significant (p \le 0.0001).

	Ру	rolysis	Smoul	dering	Flaming	ignition	Complete co	onsumption	Consump	tion time	
	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	
Time, sec (MAD)	2 (1.5)	233 (200)	18 (19)	18 (19) 394 (172)		300 (151)	113 (52)	452 (163)	60 (51)	83 (101)	
p-value	<0001 ***		<0001 ***		<00> **)01 **	<00 **)01 **	0.02	316	
Radiant exposure, kJ/m ² (MAD)	126 (93) 2873 (3470)		1134 (1214)	6339 (5285)	1575 (1775)	4102 (3275)	7088 (3269)	8151 (5534)	3748 (3222)	1682 (1409)	
p-value	<0001 ***		<0001 ***		0.00	024 *	0.03	529	0.02587 *		
	Ру	rolysis	Smoul	dering	Flaming	ignition	Complete co	onsumption	Consumption time		
	Piloted	Unpiloted	Piloted	Unpiloted	Piloted	Unpiloted	Piloted	Unpiloted	Piloted	Unpiloted	
Time, sec (MAD)	1 (0)	72 (104)	55 (73)	75 (108)	68 (87) 103 (145)		231 (229) 166 (154)		73 (56)	56 (64)	
p-value	<	0001 ***	0.02	2047 *	0.17 r	756 າ	0.57 r	772 າ	0.03	471	
Radiant exposure, kJ/m ² (MAD)	63 (81) 2043 (2516)		1844 (1872)	2790 (3575)	2268 (2265)	3558 (4289)	5576 (3235)	7775 (2763)	3159 (2953)	1953 (1784)	
p-value	<0001 ***		0.002072 **		0.12 r	234 N	0.12 r	278 1	0.166 n		

Table S8. Comparison of median time required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: n is not significant (p>0.05), * is suggestive (0.05≥p>0.005), ** is significant (0.005≥ p> 0.0001), *** is highly significant (p ≤0.0001). NA is not applicable.

		Aca	ıcia			Cass		Pinu	s		Bark					
	Static vs Dynamic Unpiloted vs Piloted		Static vs Dynamic Unpiloted vs Piloted			vs Piloted	Static vs	Dynamic	Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted			
	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic
Pyrolysis	p<0001 ***	p<0001 ***	p=0.00017 **	p=0.18 n	p<0001 ***	p=0.26 n	p=0.00029 **	p<0001 ***	p<0001 ***	p=0.26 n	p<0001 ***	p<0001 ***	p<0001 ***	p=0.0031 **	p=0.051 n	p=0.88 n
Smouldering	p<0001 ***	p<0001 ***	p=0.64 n	p=0.0056 *	p<0001 ***	p=0.005 **	p=0.9 n	p=0.0013 **	p<0001 ***	p=0.00014 **	p=0.2 n	p=0.0034 **	p<0001 ***	p=0.00021 **	p=0.0035 **	p=0.25 n
Flaming ignition	p=N/A	p=0.00019 **	p=N/A	p=N/A	p=0.0054 *	p=0.00014 **	p=0.26 n	p=0.11 n	p=0.0019 **	p=0.014 *	p=0.29 n	p=0.035 *	p<0001 ***	p=0.00037 **	p=0.00034 **	p=0.00097 **
Complete consumption	p=N/A	p=0.0026 **	p=N/A	p=N/A	p<0001 ***	p=0.00036 **	p=0.54 n	p=0.1 n	p=0.0016 **	p=0.00046 **	p=0.42 n	p=0.22 n	p<0001 ***	p<0001 ***	p=0.0015 **	p<0001 ***
Consumption time	p=N/A	p=0.38 n	p=N/A	p=N/A	p=0.28 n	p=0.036 *	p=0.46 n	p=0.99 n	p=0.3 n	p=0.28 n	p=0.81 n	p=0.13 n	p=0.89 n	p=0.092 n	p=0.0037 **	p=0.99 n

Table S9. Comparison of median radiant exposure (H_e) required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: *n* is not significant (p>0.05), * is suggestive (0.05≥p>0.005), ** is significant (0.005≥ p> 0.0001), *** is highly significant (p ≤0.0001). NA is not applicable.

		Ac	acia			Cas	ssinia			Piı	nus		Bark				
	Static vs Dynamic Unpiloted vs Piloted		vs Piloted	Static vs D	Static vs Dynamic		vs Piloted	Static vs L	Dynamic	Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted			
	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic	Unpiloted	Piloted	Static	Dynamic	
Durolucis	p<0001	p<0001	p=0.00017	p=0.27	p<0001	p=0.74	p=0.0029	p<0001	p<0001	p=0.062	p<0001	p<0001	p<0001	p=0.0066	p=0.051	p=0.84	
Pyrolysis	***	***	**	n	***	n	**	***	***	n	***	***	***	*	n	n	
Smouldoring	p<0001	p=0.0069	p=0.64	p=0.0075	p<0001	p=0.08	p=0.9	p=0.0014	p<0001	p=0.039	p=0.2	p=0.00026	p<0001	p=0.00052	p=0.0035	p=0.25	
Shibuluering	***	*	n	*	***	n	n	**	***	*	n	**	***	**	**	n	
Eleming ignition	p=N/A	p=0.033	p=N/A	p=N/A	p=0.042	p=0.16	p=0.0081	p=0.021	p=0.16	p=0.64	p=0.29	p=0.06	p<0001	p=0.0011	p=0.00034	p=0.0011	
Flaming ignition		*			*	n	*	*	n	n	n	n	***	**	**	**	
Complete	p=N/A	p=0.61	p=N/A	p=N/A	p=0.0054	p=0.67	p=0.54	p=0.11	p=0.2	p=0.32	p=0.42	p=0.27	p=0.77	p=0.38	p=0.0015	p=0.0003	
consumption		n			*	n	n	n	n	n	n	n	n	n	**	**	
Concumption H	p=N/A	p=0.79	p=N/A	p=N/A	p=0.63	p=0.78	p=0.46	p=0.86	p=0.28	p=0.89	p=0.81	p=0.16	p=0.00011	p=0.0011	p=0.0037	p=0.22	
		n			n	n	n	n	n	n	n	n	**	**	**	n	