Supplementary Material

Improved laboratory method to test flammability metrics of live plants under dynamic conditions and future implications

Timothy S. Miller ${ }^{\mathrm{A}, \mathrm{B}}$, Alexander I. Filkov ${ }^{\mathrm{A}, \mathrm{C}, *}$ and Trent D. Penman ${ }^{\mathrm{A}}$
${ }^{\text {A }}$ School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Vic. 3363, Australia
${ }^{\text {B }}$ Department of Environment, Land, Water and Planning, 8 Nicholson Street, East Melbourne Vic. 3002, Australia
${ }^{\text {C Bushfire and Natural Hazards Cooperative Research Centre (CRC), Melbourne, Vic. 3002, }}$ Australia
*Correspondence to: Email: alexander.filkov@unimelb.edu.au

Calculation method of bulk volume

Bulk volume of each sample $\mathrm{V}_{\text {bulk }}$ was obtained by calculating a sector of volume of a solid of revolution. A solid of revolution is a solid 3D figure obtained by rotating a plane curve around the axis of revolution (x axis in our particular case). To do so we required to characterize the geometry of our samples. Figure S1 shows side and front views for Acacia, Cassinia and Pinus samples. Volume of Bark samples was calculated as the volume of parallelepiped.

Figure S1. Geometry of sample: (a) side view and (b) front view. Where $y_{1}=f_{1}(x)$ and $y_{2}=f_{2}(x)$ are the rotation curves; x_{1} and x_{2} are the sample dimensions; R is radius of the sample base; L_{1} is length of the base sector (blue line).

The volume of the solid V (hatched area) formed by rotating the area between the curves $y_{1}=f_{1}(x)$ and $y_{2}=f_{2}(x)$ and the lines $x=x_{1}$ and $x=x_{2}$ about the x-axis can be calculated using the following equations:

$$
\begin{gather*}
V=V_{1}-V_{2} \tag{S1}\\
V_{1}=\pi \int_{x_{1}}^{x_{2}} f_{1}^{2}(x) d x, V_{2}=\pi \int_{x_{1}}^{x_{2}} f_{2}^{2}(x) d x \tag{S2}
\end{gather*}
$$

$$
\begin{equation*}
V=\pi \int_{x_{1}}^{x_{2}} f_{1}^{2}(x) d x-\pi \int_{x_{1}}^{x_{2}} f_{2}^{2}(x) d x \tag{S3}
\end{equation*}
$$

where V_{1} and V_{2} are the volumes of 3 D shapes obtained by rotating y_{1} (red outline) and y_{2} (green outline) around the axis x .

To calculate volumes firstly we need to define the two functions $y_{1}=f_{1}(x)$ and $y_{2}=f_{2}(x)$ (Figure S1) that best describe the approximate sample shape for each species (except Bark). To do this, the software GetData Graph Digitizer version 2.26.0.20 (Federov 2002-2013) was used. Twenty points along each curve of the sample shape were selected, using an image of the approximated sample shape and the mean sample dimensions for each species as inputs.

Using obtained points from GetData Graph Digitizer and R version 3.6.0 (R Core Team 2019) the following function describing the sample shapes was defined:

$$
\begin{equation*}
f(x)=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+A_{4} x^{4} \tag{S4}
\end{equation*}
$$

where $A_{0}, A_{1}, A_{2}, A_{3}$ and A_{4} are constants.

Table S1A shows constants and input parameters to calculate volume using equation (S4).

Table S1. Input parameters.

	Acacia		Cassinia		Pinus 1
	y_{1}	y_{2}	y_{1}	y_{2}	y_{1}
$\mathrm{x}_{1}, \mathrm{~mm}$	0	0	0	0	0
$\mathrm{x}_{2}, \mathrm{~mm}$	$371(33)$	$371(33)$	$391(17)$	$391(17)$	$192(20)$
A0	7.17493	0.66667	7.99923	0.28603	-1.27196
A1	2.1538	0.51173	1.82949	0.26486	1.31424
A2	0.01295	0.00331	0.01101	0.00162	-0.0149
A3	$3.98 \mathrm{E}-05$	$1.06 \mathrm{E}-05$	$3.32 \mathrm{E}-05$	$5.00 \mathrm{E}-06$	$9.86 \mathrm{E}-05$
A4	$-4.88 \mathrm{E}-08$	$-1.54 \mathrm{E}-08$	$-3.94 \mathrm{E}-08$	$-7.08 \mathrm{E}-09$	$-2.43 \mathrm{E}-07$

${ }^{1}$ Pinus has data only for y_{1} due to $\mathrm{y}_{2}=0$ for all samples. Values in round brackets are standard deviation.

Using functions $y_{1}=f_{1}(x)$ and $y_{2}=f_{2}(x)$ defined for the sample shape for each species, the dimensions of the samples and the equation (S3), the volume of 3D shape V for each species (except Bark) can be calculated.

To calculate volume of the sector $\mathrm{V}_{\text {bulk }}$ we used the following approach. We calculated circumference C of the 3D base first and then proportion of it occupied by the sample:

$$
\begin{gather*}
L=2 \pi R \tag{S5}\\
S=\frac{L_{1}}{C} \tag{S6}\\
V_{\text {bulk }}=V S \tag{S7}
\end{gather*}
$$

where S is the proportion of 3 D figure representing sample.
$\mathrm{V}_{\text {bulk }}$ for Bark was calculated using the equation (S8) below. Length (L), width (W) and depth (D) measurements were taken from the mean dimension calculations.

$$
\begin{equation*}
V_{b u l k}=L W D \tag{S8}
\end{equation*}
$$

Calculated values are presented in Table S2.

Table S2. Calculated parameters.

Species	Mean R (SD), $\mathbf{m m}$	Mean C (SD), $\mathbf{m m}$	Mean $\mathbf{L}_{\mathbf{1}}$ (SD), mm	Mean V (SD), $\mathbf{m}^{\mathbf{3}}$	Mean S (SD)	Mean V $_{\text {bulk }}$ (SD), $\mathbf{m}^{\mathbf{3}}$
Acacia	$165(70)$	$1039(441)$	$249(56)$	0.0222 (0.0022)	0.29 (0.14)	$6.49 \mathrm{E}-03$ $(3.45 \mathrm{E}-03)$
Cassinia	$139(57)$	$874(361)$	$132(31)$	0.0179 (0.0007)	0.18 (0.08)	$3.12 \mathrm{E}-03$ $(1.37 \mathrm{E}-03)$
Pinus	-	-	-	0.0023 (0.0001)	1	$2.31 \mathrm{E}-03$ $(1.17 \mathrm{E}-04)$
Bark	-	-	-	-	-	$9.81 \mathrm{E}-05$ $(1.75 \mathrm{E}-05)$

R is the radius of the sample base; SD is the standard deviation; C is the circumference of the 3D base; L_{1} is length of the base sector; V is the volume of a solid of revolution; S is the proportion of $3 D$ figure representing sample; $\mathrm{V}_{\text {bulk }}$ is the bulk volume of a sample; length (L), width (W) and depth (D) for bark were 192 (20) mm, 53 (6) mm, 10 (2) mm respectively.

Table S3. Mean time to false ignition in piloted experiments. Sample size (n) is also shown.

Species	Mean Time to False Ignition (sec)	
	Static	
Dynamic		
Acacia	$12.4 \pm 9.7(n=10)$	$111 \pm 103(n=9)$
Cassinia	$2.8 \pm 3.8(n=10)$	$5.9 \pm 13.9(n=9)$
Pinus	$1.9 \pm 2.9(n=10)$	$3.4 \pm 5.2(n=10)$
Bark	$1(n=2)$	$9.6 \pm 8.7(n=5)$

Supplementary Appendix S3

Table S4. Comparison of models for the ignition success, time to flammability measure and radiant exposure to flammability measure

Response variable/ Model	Model 1 Spp+Exp+Pilot	Model 2 Spp*Exp+Spp*Pilot+Exp*Pilot	Model 3 Spp*Exp*Pilot
lgnition success, AIC	111	119	123
Time to reach pyrolysis, AIC	527	372	304
Radiant exposure to reach pyrolysis, AIC	547	391	312
Time to reach smouldering, AIC	302	246	234
Radiant exposure to reach smouldering, AIC	317	218	275
Time to ignition, AIC	228	92	222
Radiant exposure to ignition, AIC	246	85	131

Spp is the species under the study (Acacia, Cassinia, Pinus and Bark), Exp is the type of the heating regime (static or dynamic), Pilot is the ignition method (piloted or unpiloted)

Table S5. Summary of results showing median time (sec) required for each species and bark to reach pyrolysis, smouldering, flaming ignition, complete consumption and the median consumption time (sec).

Flammability measure	Acacia, Median (MAD)				Cassinia, Median (MAD)				Pinus, Median (MAD)				Bark, Median (MAD)			
	Unpiloted		Piloted													
	Static	Dynamic														
Pyrolysis	$\begin{aligned} & 16 \\ & (2) \\ & \hline \end{aligned}$	347 (12)	3 (2)	308 (69)	6 (2)	271 (20)	1 (NA)	1 (NA)	$\begin{aligned} & 48 \\ & (6) \\ & \hline \end{aligned}$	462 (40)	1 (NA)	1 (NA)	1 (NA)	128 (17)	1 (NA)	$\begin{aligned} & 130 \\ & (31) \\ & \hline \end{aligned}$
Smouldering	$\begin{aligned} & 25 \\ & \text { (3) } \\ & \hline \end{aligned}$	480 (22)	$\begin{aligned} & \hline 22 \\ & (6) \\ & \hline \end{aligned}$	319 (81)	13 (3)	443 (32)	11 (4)	150 (94)	$\begin{aligned} & \hline 57 \\ & (6) \\ & \hline \end{aligned}$	515 (9)	48 (10)	378 (83)	4 (2)	184 (12)	2 (1)	$\begin{aligned} & 171 \\ & (27) \\ & \hline \end{aligned}$
Flaming ignition	$\begin{gathered} 85 \\ \text { (NA) } \\ \hline \end{gathered}$	589 (NA)	$\begin{aligned} & 36 \\ & \text { (8) } \\ & \hline \end{aligned}$	319 (81)	48 (7)	487 (41)	$\begin{aligned} & \hline 20 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & \text { (93) } \end{aligned}$	$\begin{gathered} 102 \\ (7) \\ \hline \end{gathered}$	558 (31)	73 (34)	$\begin{gathered} \hline 422 \\ (146) \\ \hline \end{gathered}$	7 (1)	275 (32)	3 (1)	$\begin{aligned} & 198 \\ & (25) \\ & \hline \end{aligned}$
Complete consumption	$\begin{aligned} & 117 \\ & \text { (NA) } \end{aligned}$	600 (NA)	$\begin{gathered} 87 \\ \text { (19) } \end{gathered}$	$\begin{gathered} \hline 393 \\ (135) \\ \hline \end{gathered}$	82 (24)	562 (36)	65 (28)	497 (65)	$\begin{aligned} & 137 \\ & (23) \\ & \hline \end{aligned}$	574 (27)	$\begin{aligned} & \hline 141 \\ & (20) \\ & \hline \end{aligned}$	555 (47)	$\begin{aligned} & 118 \\ & (12) \\ & \hline \end{aligned}$	433 (23)	66 (6)	$\begin{aligned} & 306 \\ & (20) \\ & \hline \end{aligned}$
Consumption time	$\begin{gathered} 32 \\ \text { (NA) } \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ \text { (NA) } \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ (55) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (23) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (7.4) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (4.5) \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ (34) \\ \hline \end{gathered}$	$\begin{gathered} 198 \\ (173) \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ (13) \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 46 \\ (37) \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ (50) \\ \hline \end{gathered}$	$\begin{aligned} & 111 \\ & (22) \\ & \hline \end{aligned}$	$\begin{gathered} 86 \\ (59) \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ (8.2) \\ \hline \end{gathered}$	$\begin{gathered} 97 \\ (21) \\ \hline \end{gathered}$

NA (not applicable) is for experiments with one successful ignition. MAD is the median standard deviation (sec).

Table S6. Summary of results showing median radiant exposure $H_{e}\left(\mathrm{~kJ} / \mathrm{m}^{2}\right)$ required for each species and bark to reach pyrolysis, smouldering, flaming ignition,
complete consumption and the median consumption $H_{e}\left(\mathrm{~kJ} / \mathrm{m}^{2}\right)$.

Flammability measure	Acacia, Median (MAD)				Cassinia, Median (MAD)				Pinus, Median (MAD)				Bark, Median (MAD)			
	Unpiloted		Piloted													
	Static	Dynamic														
Pyrolysis	$\begin{aligned} & 1008 \\ & (126) \\ & \hline \end{aligned}$	$\begin{aligned} & 5119 \\ & (266) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 189 \\ (126) \\ \hline \end{gathered}$	$\begin{gathered} 4266 \\ (1405) \\ \hline \end{gathered}$	378 (95)	$\begin{aligned} & 3540 \\ & (369) \\ & \hline \end{aligned}$	63 (NA)	9 (NA)	$\begin{aligned} & \hline 3024 \\ & (347) \\ & \hline \end{aligned}$	$\begin{gathered} 8517 \\ (1365) \\ \hline \end{gathered}$	63 (NA)	9 (NA)	63 (NA)	$\begin{aligned} & 1351 \\ & (211) \\ & \hline \end{aligned}$	63 (NA)	$\begin{aligned} & 1376 \\ & (377) \\ & \hline \end{aligned}$
Smouldering	$\begin{array}{r} 1544 \\ (158) \\ \hline \end{array}$	$\begin{array}{r} 9187 \\ (841) \\ \hline \end{array}$	$\begin{aligned} & 1355 \\ & (347) \\ & \hline \end{aligned}$	$\begin{gathered} 4498 \\ (1725) \\ \hline \end{gathered}$	788 (158)	$\begin{gathered} 7843 \\ (1033) \\ \hline \end{gathered}$	693 (252)	$\begin{gathered} 1648 \\ (1118) \\ \hline \end{gathered}$	$\begin{array}{r} 3560 \\ (347) \\ \hline \end{array}$	$\begin{aligned} & 10650 \\ & (397) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2993 \\ & (630) \\ & \hline \end{aligned}$	$\begin{gathered} 5935 \\ (2500) \\ \hline \end{gathered}$	221 (95)	$\begin{array}{r} 2103 \\ (177) \\ \hline \end{array}$	95 (32)	$\begin{array}{r} 1924 \\ (394) \\ \hline \end{array}$
Flaming ignition	5355 (NA)	$\begin{gathered} 14544 \\ \text { (NA) } \end{gathered}$	$\begin{aligned} & 2268 \\ & (504) \\ & \hline \end{aligned}$	$\begin{gathered} 4498 \\ (1725) \\ \hline \end{gathered}$	$\begin{aligned} & 2993 \\ & (410) \end{aligned}$	$\begin{gathered} 9460 \\ (1516) \\ \hline \end{gathered}$	$\begin{aligned} & 1260 \\ & (410) \\ & \hline \end{aligned}$	$\begin{gathered} 1648 \\ (1113) \\ \hline \end{gathered}$	$\begin{aligned} & 6426 \\ & (441) \end{aligned}$	$\begin{aligned} & 12843 \\ & (1640) \end{aligned}$	$\begin{gathered} 4568 \\ (2111) \end{gathered}$	$\begin{gathered} 7163 \\ (4720) \\ \hline \end{gathered}$	410 (32)	$\begin{aligned} & 3605 \\ & (572) \end{aligned}$	189 (63)	$\begin{aligned} & 2318 \\ & (391) \\ & \hline \end{aligned}$
Complete consumption	7371 (NA)	$\begin{gathered} 15232 \\ \text { (NA) } \\ \hline \end{gathered}$	$\begin{gathered} 5481 \\ (1197) \\ \hline \end{gathered}$	$\begin{gathered} 6403 \\ (3098) \\ \hline \end{gathered}$	$\begin{gathered} 5166 \\ (1512) \\ \hline \end{gathered}$	$\begin{aligned} & 12982 \\ & (2122) \\ & \hline \end{aligned}$	$\begin{gathered} 4095 \\ (1764) \\ \hline \end{gathered}$	$\begin{gathered} 9870 \\ (3113) \\ \hline \end{gathered}$	$\begin{gathered} 8631 \\ (1449) \\ \hline \end{gathered}$	$\begin{aligned} & 13710 \\ & (1522) \\ & \hline \end{aligned}$	$\begin{gathered} 8883 \\ (1260) \\ \hline \end{gathered}$	$\begin{aligned} & 12605 \\ & (2755) \\ & \hline \end{aligned}$	$\begin{aligned} & 7403 \\ & (756) \\ & \hline \end{aligned}$	$\begin{aligned} & 7498 \\ & (728) \\ & \hline \end{aligned}$	$\begin{aligned} & 4127 \\ & (378) \\ & \hline \end{aligned}$	$\begin{array}{r} 4224 \\ (427) \\ \hline \end{array}$
Consumption He_{e}	$\begin{aligned} & 2016 \\ & \text { (NA) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 688 \\ & \text { (NA) } \\ & \hline \end{aligned}$	$\begin{gathered} 3717 \\ (3456) \\ \hline \end{gathered}$	$\begin{aligned} & 1098 \\ & (684) \\ & \hline \end{aligned}$	$\begin{aligned} & 1008 \\ & (467) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 419 \\ & (76) \\ & \hline \end{aligned}$	$\begin{gathered} 3150 \\ (2148) \\ \hline \end{gathered}$	$\begin{gathered} 5883 \\ (4580) \\ \hline \end{gathered}$	$\begin{aligned} & 1386 \\ & (841) \\ & \hline \end{aligned}$	$\begin{gathered} 867 \\ (175) \\ \hline \end{gathered}$	$\begin{gathered} 2898 \\ (2335) \end{gathered}$	$\begin{gathered} \hline 924 \\ (657) \\ \hline \end{gathered}$	$\begin{gathered} 6962 \\ (1354) \\ \hline \end{gathered}$	$\begin{aligned} & 2087 \\ & (985) \\ & \hline \end{aligned}$	$\begin{aligned} & 3874 \\ & (514) \end{aligned}$	$\begin{aligned} & 1867 \\ & (521) \end{aligned}$

NA (not applicable) is for experiments with one successful ignition. MAD is the median standard deviation (kJ/m²).

Table S7. Median time and radiant exposure required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: n is not significant ($p>0.05$), * is suggestive $(0.05 \geq p>0.005),{ }^{* *}$ is significant ($0.005 \geq p>0.0001$), *** is highly significant ($p \leq 0.0001$).

	Pyrolysis		Smouldering		Flaming ignition		Complete consumption		Consumption time	
	Static	Dynamic								
Time, sec (MAD)	2 (1.5)	233 (200)	18 (19)	394 (172)	25 (28)	300 (151)	113 (52)	452 (163)	60 (51)	83 (101)
p-value	$\underset{* * *}{<0001}$		$\begin{gathered} <0001 \\ * * * \end{gathered}$		$\underset{* * *}{<0001}$		$\underset{* * *}{<0001}$		$\begin{gathered} 0.02316 \\ * \\ \hline \end{gathered}$	
Radiant exposure, $\mathrm{kJ} / \mathrm{m}^{2}$ (MAD)	126 (93)	$\begin{gathered} 2873 \\ (3470) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1134 \\ (1214) \\ \hline \end{gathered}$	$\begin{gathered} 6339 \\ (5285) \\ \hline \end{gathered}$	1575 (1775)	$\begin{gathered} \hline 4102 \\ (3275) \\ \hline \end{gathered}$	7088 (3269)	$\begin{gathered} 8151 \\ (5534) \\ \hline \end{gathered}$	3748 (3222)	$\begin{gathered} 1682 \\ (1409) \\ \hline \end{gathered}$
p-value	$\begin{gathered} <0001 \\ * * * \end{gathered}$		<0001		$\begin{gathered} 0.00024 \\ * * \\ \hline \end{gathered}$		$\begin{gathered} 0.03529 \\ * \\ \hline \end{gathered}$		0.02587	
	Pyrolysis		Smouldering		Flaming ignition		Complete consumption		Consumption time	
	Piloted	Unpiloted								
Time, sec (MAD)	1 (0)	72 (104)	55 (73)	75 (108)	68 (87)	103 (145)	231 (229)	166 (154)	73 (56)	56 (64)
p-value	$\underset{* * *}{<0001}$		0.02047		$\begin{gathered} 0.1756 \\ \mathrm{n} \\ \hline \end{gathered}$		$\begin{gathered} 0.5772 \\ \mathrm{n} \\ \hline \end{gathered}$		0.03471	
Radiant exposure, $\mathrm{kJ} / \mathrm{m}^{2}$ (MAD)	63 (81)	$\begin{gathered} 2043 \\ (2516) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1844 \\ (1872) \\ \hline \end{gathered}$	$\begin{gathered} 2790 \\ (3575) \\ \hline \end{gathered}$	2268 (2265)	$\begin{gathered} 3558 \\ (4289) \\ \hline \end{gathered}$	5576 (3235)	$\begin{gathered} 7775 \\ (2763) \\ \hline \end{gathered}$	3159 (2953)	$\begin{gathered} 1953 \\ (1784) \\ \hline \end{gathered}$
p-value	$\underset{* * *}{<0001}$		$\begin{gathered} 0.002072 \\ * * \\ \hline \end{gathered}$		$\begin{gathered} 0.1234 \\ \mathrm{n} \\ \hline \end{gathered}$		$\begin{gathered} 0.1278 \\ \mathrm{n} \\ \hline \end{gathered}$		$\begin{gathered} 0.166 \\ \mathrm{n} \\ \hline \end{gathered}$	

Table S8. Comparison of median time required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: n is not significant ($p>0.05$), * is suggestive $(0.05 \geq p>0.005),{ }^{* *}$ is significant ($0.005 \geq p>0.0001$), *** is highly significant ($p \leq 0.0001$). NA is not applicable.

	Acacia				Cassinia				Pinus				Bark			
	Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted	
	Unpiloted	Piloted	Static	Dynamic												
Pyrolysis	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$\mathrm{p}=\underset{* *}{0.00017}$	$p=0.18$	$\underset{* * *}{\mathrm{p}<0001}$	$\begin{gathered} p=0.26 \\ n \end{gathered}$	$\mathrm{p}=\underset{* *}{0.00029}$	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$\begin{gathered} p=0.26 \\ n \end{gathered}$	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$\mathrm{p}=\underset{* *}{0.0031}$	$\begin{gathered} \mathrm{p}=0.051 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} p=0.88 \\ n \end{gathered}$
Smouldering	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$\begin{gathered} p=0.64 \\ n \end{gathered}$	$\mathrm{p}=0.0056$	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* *}{\mathrm{p}=0.005}$	$\begin{gathered} \mathrm{p}=0.9 \\ \mathrm{n} \end{gathered}$	$p=0.0013$	$\underset{* * *}{\mathrm{p}<0001}$	$\mathrm{p}=\underset{* *}{0.00014}$	$\begin{gathered} \mathrm{p}=0.2 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=\underset{* *}{0.0034}$	$\underset{* * *}{\mathrm{p}<0001}$	$\mathrm{p}=\underset{* *}{0.00021}$	$\mathrm{p}=0.0035$	$\begin{gathered} \mathrm{p}=0.25 \\ \mathrm{n} \end{gathered}$
Flaming ignition	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=0.00019$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=0.0054$	$\mathrm{p}=0.00014$	$\begin{gathered} p=0.26 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}=0.11 \\ \mathrm{n} \end{gathered}$	$p=0.0019$	$\mathrm{p}=0.014$	$\begin{gathered} \mathrm{p}=0.29 \\ \mathrm{n} \end{gathered}$	$p=0.035$	$\mathrm{p}<0001$	$\mathrm{p}=0.00037$	$\mathrm{p}=0.00034$	$\mathrm{p}=0.00097$
Complete consumption	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=0.0026$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}<0001$	$p=0.00036$	$\begin{gathered} p=0.54 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}=0.1 \\ \mathrm{n} \end{gathered}$	$p=0.0016$	$\mathrm{p}=0.00046$	$\begin{gathered} \mathrm{p}=0.42 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.22 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}<0001$	$p<0001$	$\mathrm{p}=0.0015$	$\mathrm{p}<0001$
Consumption time	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\begin{gathered} \mathrm{p}=0.38 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\begin{gathered} p=0.28 \\ n \end{gathered}$	$p=0.036$	$\begin{gathered} p=0.46 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}=0.99 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.3 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} p=0.28 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}=0.81 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.13 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.89 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.092 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=0.0037$	$\begin{gathered} \mathrm{p}=0.99 \\ \mathrm{n} \end{gathered}$

Table S9. Comparison of median radiant exposure $\left(\mathrm{H}_{\mathrm{e}}\right)$ required to reach flammability measures and to consume samples for different heating regimes and ignition methods. Differences between medians are displayed through p-value (p). Symbols indicate level of significance: n is not significant ($p>0.05$), * is suggestive ($0.05 \geq p>0.005$), ${ }^{* *}$ is significant ($0.005 \geq p>0.0001$), ${ }^{* * *}$ is highly significant ($p \leq 0.0001$). NA is not applicable.

	Acacia				Cassinia				Pinus				Bark			
	Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted		Static vs Dynamic		Unpiloted vs Piloted	
	Unpiloted	Piloted	Static	Dynamic												
Pyrolysis	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$p=0.00017$	$\begin{gathered} p=0.27 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$\begin{gathered} \mathrm{p}=0.74 \\ \mathrm{n} \end{gathered}$	$p=0.0029$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$\begin{gathered} \mathrm{p}=0.062 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$\underset{* * *}{\mathrm{p}<0001}$	$\underset{* * *}{\mathrm{p}<0001}$	$p=0.0066$	$\begin{gathered} \mathrm{p}=0.051 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} p=0.84 \\ n \end{gathered}$
Smouldering	$\mathrm{p}<0001$	$\mathrm{p}=0.0069$	$\begin{gathered} \mathrm{p}=0.64 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=0.0075$	$\mathrm{p}<0001$	$\begin{gathered} \mathrm{p}=0.08 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.9 \\ \mathrm{n} \end{gathered}$	$p=0.0014$	$\mathrm{p}<0001$	$p=0.039$	$\begin{gathered} \mathrm{p}=0.2 \\ \mathrm{n} \\ \hline \end{gathered}$	$\mathrm{p}=0.00026$	$\mathrm{p}<0001$	$\mathrm{p}=0.00052$	$p=0.0035$	$\begin{gathered} \mathrm{p}=0.25 \\ \mathrm{n} \end{gathered}$
Flaming ignition	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$p=0.033$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=0.042$	$\begin{gathered} \mathrm{p}=0.16 \\ \mathrm{n} \end{gathered}$	$p=0.0081$	$\mathrm{p}=0.021$	$\begin{gathered} \mathrm{p}=0.16 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.64 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.29 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.06 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}<0001 \\ * * * \end{gathered}$	$p=0.0011$	$\mathrm{p}=0.00034$	$\mathrm{p}=0.0011$ **
Complete consumption	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\begin{gathered} p=0.61 \\ n \end{gathered}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$p=0.0054$	$\begin{gathered} \mathrm{p}=0.67 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.54 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.11 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.2 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.32 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.42 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.27 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.77 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.38 \\ \mathrm{n} \end{gathered}$	$p=0.0015$ $* *$	$\begin{gathered} \mathrm{p}=0.0003 \\ * * \end{gathered}$
Consumption He_{e}	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$\begin{gathered} \mathrm{p}=0.79 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=\mathrm{N} / \mathrm{A}$	$p=N / A$	$\begin{gathered} \mathrm{p}=0.63 \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{p}=0.78 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.46 \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} p=0.86 \\ n \end{gathered}$	$\begin{gathered} \mathrm{p}=0.28 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.89 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.81 \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{p}=0.16 \\ \mathrm{n} \end{gathered}$	$\mathrm{p}=0.00011$ **	$p=0.0011$	$p=0.0037$	$\begin{gathered} \mathrm{p}=0.22 \\ \mathrm{n} \end{gathered}$

