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Abstract. The increasing global concern about wildfires, mostly caused by people, has triggered the development of
human-caused fire occurrence models in many countries. The premise is that better knowledge of the underlying factors is

critical for many fire management purposes, such as operational decision-making in suppression and strategic prevention
planning, or guidance on forest and land-use policies. However, the explanatory and predictive capacity of fire occurrence
models is not yet widely applied to the management of forests, fires or emergencies. In this article, we analyse the

developments in the field of human-caused fire occurrence modelling with the aim of identifying the most appropriate
variables and methods for applications in forest and fire management and civil protection. We stratify our worldwide
analysis by temporal dimension (short-term and long-term) and by model output (numeric or binary), and discuss

management applications. An attempt to perform a meta-analysis based on published models proved limited because of
non-equivalence of themetrics and units of the estimators and outcomes across studies, the diversity ofmodels and the lack
of information in published works.
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Introduction

Wildfire is a major disturbance in many parts of the world and its

incidence is growing due to climate change (Liu et al. 2010;
Wotton et al. 2010; Moriz et al. 2012). More than 30% of the
world’s land mass already has significant and recurrent fire
activity, though remote sensing has shown Africa and Latin

America to be the most active fire areas (Chuvieco et al. 2008).
According to the Food and Agriculture Organization of the
United Nations (FAO 2010), which compiled a wildfire database

with records from64 countries (60% of theworld’swildlands), an
annual average of 487 000 wildfires occurred during 2003–2007.
Worldwide, more than 90% of fires are linked directly or indi-

rectly to intentional and unintentional human actions, power lines
and machinery (FAO 2007). These fires are usually termed
‘human-caused fires’ (HCFs). In contrast, ‘natural fires’ are those

originating from natural causes such as lightning, spontaneous
ignition, volcanic eruptions and earthquakes.

HCFs often display broadly identifiable spatial and temporal
patterns, which led researchers in the 1950s to believe that

wildfire occurrences could be modelled. At that time, Crosby
(1954) argued that ‘Fire occurrence can be predicted’ and

Bruce (1963), convinced that fire ignitions could be analysed
by mathematical methods, asked ‘How many fires [occur]?’
New models of fire occurrence appeared during the following
decades. Donoghue and Main (1985) produced the first study

focusing on HCF occurrence. It was soon recognised that
forecasting these fire occurrences could provide important
information for prevention programs (Altobellis 1983;

Donoghue et al. 1987), optimising resource allocation in strategic
firefighting (Martell et al. 1987; Dlamini 2010) and generally
guiding forest and fire policies (Stolle et al. 2003; Chas-Amil

et al. 2010). With the development of the field and the widening
of the goals of modelling, definitions for what the different
authors meant by fire occurrence have often required clarifica-

tion.Herewe abide by the concept as itwas defined and used early
in the wildfire literature (Haines et al. 1983; Martell et al. 1987)
because this has been the predominant view in most papers
published since. A fire occurrence is ‘one fire event occurring
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in a specific place within a specific period of time’ (Romme
1980). Fire occurrence, according to the definition in the Fire

Management Glossary by Merrill and Alexander (1987), is

‘the number of fires started in a given area over a given period
of time’, a definition also adopted by FAO (updated January
2005). Fire occurrence measures ignitions or fire starts, and is a

process modelled separately from fire spread, which may or may
not take place after ignition depending on environmental cond-
itions. Fire occurrence deals with absolute numbers, whereas the

related concepts of fire frequency or fire incidence are expressed
as averages (Merrill and Alexander 1987). Averages and return
intervals are crucial in disturbance ecology, for instance, but
absolute numbers and shorter time spans are needed for opera-

tional decisions in fire management. Another source of confusion
may arise from the fact that early works also referred to ‘the
probability or chance of fire starting determined by the presence

and activities of causative agents (i.e. potential number of ignition
sources)’ as ‘fire risk’, or ‘human risk’ if the causative agents
were humans (Merrill and Alexander 1987). The term ‘fire risk’

was used to describe the probability of HCF occurrence until
2005, when the term aligned with the broader definition and
terminology in the risk analysis field (Finney 2005; Chuvieco

et al. 2010, 2014; Miller and Ager 2013). Nowadays, the term
‘risk’ is generally used to describe the chance of loss, determined
fromestimates of likelihood and associated outcomes (likelihood,
intensity and effects) (Miller and Ager 2013). We have avoided

using ‘human risk’ throughout our review, but we caution that
ignoring it when looking for ‘human-caused fire occurrence’ in a
literature search would miss a lot of early work.

Consequently, the aim of this review is to analyse the
developments in the field of HCF occurrence modelling.
Modellers have tried to identify which environmental and

socioeconomic factors influence fire occurrence by using many
techniques for many different goals. Our main goal is to identify
the relevant variables and best methods to explain and anticipate
fires and evaluate the level of achievement reached bymodellers

in fulfilling forest and fire management and civil protection
needs, investigating the alignment of background motivations
from modellers with management demands.

For this purpose, we have considered research papers pub-
lished in English in widely available scientific journals, as well
as widely circulated reports published in the 1950s and ‘60s

(when publishing in scientific journals was not as common as it
was later on). A total of 152 research papers were found between
the first (Crosby 1954) and the last (Papakosta and Straub 2016),

and all are listed in Table S1, available as Supplementary
material to this paper, with descriptive information on the
contents. The largest number of HCF papers was published
between 2012 and 2016, with an average of 14 studies per year.

This review compilation considers general HCF occurrence
modelling (42 studies), but also work done on specific human-
related causes, like arson (Donoghue andMain1985;Vasconcelos

et al. 2001; Prestemon and Butry 2005; Juan et al. 2012; Penman
et al. 2013; Serra et al. 2013, 2014; Abt et al. 2015; Collins et al.
2015) and negligence (Vasconcelos et al. 2001; Juan et al. 2012;

Serra et al. 2013, 2014;Abt et al. 2015;Collins et al. 2015), aswell
as livestock-related (Ruiz-Mirazo et al. 2012) or debris fires
(Donoghue and Main 1985). A reliable classification of the
specific causes (human or natural) is not always available (FAO

2007). Consequently, we have also considered research papers
that include ignitions from any cause or those that do not specify
the ignition source, but only if they state that human activity is

the predominant causal factor for ignitions in the study area
(100 studies).

Background motivations

Most previous work specifies at least a generic purpose for

building models, but very few provide examples of practical
applications or guidelines for the implementation of their fire
occurrence outputs, suggesting that the link between research
andmanagement needs to be strengthened. A fewmodels (5) are

limited to testing the significance of certain variables, such
as soil profile data (Levi and Bestelmeyer 2016) or roads
(Narayanaraj and Wimberly 2012). The goal most commonly

stated across studies (55) is fire prevention, including mainly
forest and fuel treatments, and planning for risk reduction and
damage mitigation. Then come goals related to supporting

decisions or strategies and policies for general fire, forest or land
management (33). Another background motivation is fire sup-
pression: deployment, pre-suppression planning, firefighting

efficiency, and optimisation of human resources and funds (24).
Climate change effects on vegetation covers and fire regimes
(11) have received attention only recently (mainly in 2009–
2016). Some studies explore the link between fire occurrence

and fire danger rating to develop early warning systems (7).
Ecological or conservationist goals are scarce (5) and quite
restricted in time (2007–2009). At least 10 studies seem to

pursue the testing of novel techniques without mentioning any
specific or generic goal.

In order to test the alignment of these background motiva-

tions from modellers with management demands, we have
analysed summaries of firemanagement strategies in the regions
with more fire occurrence publications, southern Europe (56
publications), and North America (United States, 33, and

Canada, 16). It is widely recognised in these regions that
quantitative risk assessment is the basis for all fire management
activities (FAO 2011; Miller and Ager 2013; WFLC 2017).

However, the complexity of fire risk estimation has also been
highlighted; the 34thmeeting of theEuropeanCommission expert
group on forest fires (Barcelona, Spain, 2015), including civil

protection authorities from 22 countries, demanded cooperation in
setting basic common criteria to determine medium and high fire
risk areas (European Commission 2015). Since fire risk is a

combination of likelihood, intensity and effects, where fire like-
lihood includes ignition probability and burn probability (Miller
and Ager 2013), models developed for ignition probability using
fire occurrence data within risk frameworks certainly do serve

management needs. However, as comprehensive national risk
frameworks are either not developed or formally applied by
administrations and agencies in most fire-affected countries, fire

occurrencemodels are not routinelyused, andauthors are bound to
state generic purposes in their papers.

Temporal span for modelling

The motivations in these studies set the frame for the temporal
span formodelling: the segregation of previousworks into short-
term (daily, weekly and monthly studies, 43 papers, 47 models)
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or long-term (seasonal, annual and longer time ranges of several
years, 109 papers, 134 models) responded to the stated goals for
model building. Improved detection, preparedness, pre-attack

planning and suppression predominate in short-term models
(Haines et al. 1970; Martell et al. 1989; Bradstock et al. 2009;
Wotton et al. 2010; Papakosta and Straub 2016), whereas long-

term models are usually built for fire prevention, landscape fuel
treatments, forest management, land-use planning and civil
protection (Cardille and Ventura 2001; Koutsias et al. 2010;

Gralewicz et al. 2012a; Oliveira et al. 2012; Abt et al. 2015).
Accordingly, the temporal dimensions for fire observations

may be daily (Crosby 1954; Haines et al. 1983; Alonso-Betanzos
et al. 2003; Lozano et al. 2007; Albertson et al. 2009; Wotton

et al. 2010; Padilla and Vega-Garcia 2011; Sakr et al. 2011),
monthly (Preisler et al. 2004; Boulanger et al. 2014) or yearly
(Todd andKourtz 1991; Prestemon andButry 2005; Hu and Zhou

2014; Karouni et al. 2014). However, longer time-spans of
several years are the most frequent (Pew and Larsen 2001;
Chuvieco et al. 2008; Avila-Flores et al. 2010; Gonzalez-

Olabarria et al. 2011; West et al. 2016). Within a given year, fire
occurrence levels may be constant (e.g. central Africa) or differ
seasonally (e.g. UnitedKingdom,Albertson et al. 2009) – there is

awell-defined seasonality in some regionswith a high peak of fire
occurrence in summer (Ager et al. 2014), whereas in others there
are twowell-defined peaks of fire frequency, for example in early
winter and summer (Martell et al. 1989). Accordingly, some

models only consider fire observations recorded during a fire
season defined by the period with the highest number of fires
(Haines et al. 1970; Vega-Garcia et al. 1995, 1996; Dickson et al.

2006; Vilar et al. 2010).
Considering the amount of attention given in the past to long-

term models for general fire prevention, and fire and forest

planning and policy, and their general maturity, it would be
expedient to widen the focus for the future to the development of
short-term applications with operational potential. Dailymodels
have been rarely used because most agencies in fire-affected

countries have treated the landscape as uniformly high-risk
(Boulanger et al. 2012, 2014), operating under full suppression
policies (all fires aggressively fought until extinguished, any-

where and under all weather conditions). However, paradigms
are changing to allow for managed or prescribed fire (let-burn
policies), budgets are constrained in the current economic

recession, wildland–urban interfaces are expanding and climate
introduces uncertainties, all of which increase the need for short-
term fire occurrence prediction (Costafreda-Aumedes et al.

2016a).

Sources of ignition data

HCF occurrence models rely on the analysis of historical data to
describe past HCF patterns or to predict future events. Fire
events are usually investigated, reported and recorded in data-

bases by national forest or fire departments, agencies or
administrations, and usually include the fire start location, date
and time, and cause, which are the basis for wildfire occurrence

modelling (Finney 2005). However, undetected, unreported or
missing fires are a common problem in many countries, because
of a lack of managerial resources and peak fire loads, differing
policies onminimum reporting of fire size or fire start location in

remote underpopulated regions with low values at risk (Lefort
et al. 2004). When field-collected fire records are unavailable,
fire occurrence can be estimated from remote sensing sources

such as burned area products or hotspots (Venevsky et al. 2002;
Vadrevu et al. 2006; Maingi and Henry 2007; Chuvieco et al.

2008; Garcia-Gonzalo et al. 2012; Marques et al. 2012; Zhang

et al. 2013; Li et al. 2014; Bedia et al. 2015; Ancog et al. 2016).
All models built from remote sensing data have had to consider a
certain minimum fire size because of technical limitations in

sensor spatial or spectral resolution, including, for example,
fires.400 ha (Preisler and Westerling 2007; West et al. 2016),
fires .0.25 ha (Stolle et al. 2003) or fires .0.1 ha (Miranda
et al. 2012). In these cases, precise ignition locations have a

degree of uncertainty – after ignition, determined by causative
agent activity and fine fuel state, fires spread and grow to a final
size determined by topography, fuels, winds and suppression

efforts, masking fire start location. Many remote sensing sour-
ces are currently available, besides those previously used, for
future fire occurrence collection, such as the Wildfire Auto-

mated Biomass Burning Algorithm (Schmidt et al. 2002)
developed for GOES-13, GOES-15, Meteosat-10 or the
MTSAT-1R/-2, or Land Surface Temperature, and Thermal

Anomalies and Fire available in the MODIS Collections 5 and 6
products: MOD11/MYD11 (Wan et al. 2002), MOD14/MYD14
(Giglio 2010), MCD45A1 (Giglio et al. 2009) and MOD21/
MYD21 (Hulley et al. 2014). However, some fires may be

missing from these algorithms, as thresholds used to minimise
the number of false detections cause some fires to be deleted
(Giglio et al. 2003).

Spatialising ignition data

Fire occurrence refers to the number of fires in a spatial unit for a
certain time span. Spatial unit types depend on the source of fire
data and associated location uncertainty, but it is commonplace
for authors to spatially aggregate ignitions within regular grids

(pixels, quadrats) or within irregular administrative divisions
(areal units such as districts, provinces, townships).

Estimations of the actual number of ignitions in a prediction

unit or in a certain time span have been provided on occasions
(Garcı́a Diez et al. 1994, 1999; Cardille et al. 2001; Knorr et al.
2014; Plucinski et al. 2014; Xiao et al. 2015), though not in the

majority of the works. Fires are rare events (Vega-Garcia et al.
1995), and increasing resolutions across temporal and spatial
scales multiplies no-fire observations for a same number of fire

observations. Accepting that fires are rare events and that rarely
more than one fire takes place in the temporal and spatial unit
under study allows a binary dependent variable to be used. Fire
occurrence can be modelled as absence or presence of fire

(coded 0 or 1), and most research papers have focused on this
binary prediction of wildfires (Andrews et al. 2003; Reineking
et al. 2010; Zhang et al. 2010, 2016; Arndt et al. 2013; Pan et al.

2016). Many HCF occurrence models are probabilistic; their
output is the probability that ‘at least one fire occurs’, ranging
from 0 to 1. By classifying the output of such models with a cut-

off value, predicted v. observed values can be used to test
predictive performance. The choice of modelling fire occur-
rence as a binary (at least one fire) or numerical variable
(number of fires) determines most modelling methods.
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Only a few recent studies have been able to analyse the
spatial-specific location of each event as a point pattern in a
certain location and date (Yang et al. 2007; Juan et al. 2012; Liu

et al. 2012; Miranda et al. 2012; Fuentes-Santos et al. 2013;
Serra et al. 2013, 2014; Costafreda-Aumedes et al. 2016b).
Spatially explicit point process models have so far been consi-

dered as statistical tools to analyse space (–time) structures of
wildfires, but not to model such spatial structures. For instance,
Ripley’s K function has been used to describe spatial structures,

or configurations, of such point patterns. However, the use of
such model schemas combined with variables related to fire
occurrence can result in very powerful predictive tools, and
these models hold the greatest potential for the future in terms of

resolution, as their spatial unit for prediction is adimensional
(a point instead of a spatial unit for prediction).

Driving risk factors of HCF occurrence

The probability of a fire starting depends on the presence and

activity of ignition sources and the conditions within the envi-
ronment where fires occur (Merrill and Alexander 1987).
Environmental factors with high variability in time are often

called ‘temporal’ factors, and are mainly derived from weather

or weather-driven indices related to drought or vegetation
moisture, both influencing ignitability. However, a few tem-
poral variables are related to ignition pressure by humans, such

as day of the week. Factors derived from physiography, land
cover or human socioeconomic variables (e.g. census data), are
often termed as ‘spatial’ or ‘geographic’ variables, and they

either have inherent low temporal variability or data that are
infrequently updated and often unavailable. Most are related to
ignition pressure by human presence and activities, but some

also influence ignitability, such as fuel type.
Some studies only consider either ‘temporal’ or ‘spatial’

variables, or specific sub-groups (i.e. only weather, only
landscape structure) for input variables (Plucinski 2012).

Across the abundant research conducted thus far, many spatial
and temporal factors have been tested and been found to be
related to, or to be able to explain, HCF occurrence. The

technique used for the analysis (Verdú et al. 2012; Rodrigues
et al. 2016; Vilar et al. 2016a) and the local values of the
variables in each study area (Argañaraz et al. 2015) influence

variable selection and behaviour in a model. However, the
analysis of spatial and temporal variables selected in most
studies for short-term (Table 1) and long-term HCF modelling

(Table 2), shows coincidences in variables and their signs

Table 1. List and behaviour of the most influential variables for short-term fire occurrence prediction

Weather and danger Physiography Vegetation / fuel Human-related Other

Mean and max. temperature (þ) Elevation (�) Shrubs (þ) Dist. to roads (�) Holidays (þ)

Min. temperature (�) Aspect (þ) Grasslands (þ) Road density (þ) Weekend (þ)

Precipitation (�) Wetlands (�) Dist. to settlements (�) Workday (�)

Relative humidity (�) Urban areas (�) Fire history (þ)

Wind Speed (þ) Dist. to railroads (�)

FFMC (þ)

FWI (þ)

DMC (þ)

DC (þ)

ISI (þ)

BUI (þ)

McArthur (þ)

Table 2. List and behaviour of the most influential variables for long-term fire occurrence prediction

Weather and danger Physiography Vegetation / fuel Human-related Other

Mean and max. temperature (þ) Elevation (�) Wildland–urban interface (þ) Distance to roads (�) Winter (�)

Annual precipitation (þ) Slope (�) Forest–agriculture interface (þ) Road density (þ) Spring and summer (þ)

Fire-season precipitation (�) Topographic

roughness (þ)

Wildland–agriculture interface (þ) Distance to settlements (�) Date maximum NDVI (�)

Non-fire season precipitation (þ) Forest–grassland interface (þ) Population density (þ) Recent fires (þ)

Days with precipitation (�) Forests (þ) Building density (þ) Holiday (þ)

Days without precipitation (þ) Coniferous (þ) Distance to railroads (�)

Broadleaves (�) Railroad density (þ)

Shrublands (þ) Distance to

recreational areas (�)

Grasslands (þ) Protected areas (þ)

Agriculture (þ) Per capita GDP (þ)
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(positive or negative relationship to fire occurrence), which
allow us to summarise some global patterns.

Predictors for short-term studies

As should be expected when considering combustion require-

ments within the environment, significant variables in the short
term models reflect weather conditions that cause downward
changes in fuel moisture and, consequently, upward changes in

fuel availability. Temporal variables drive short-term models.
High mean and maximum temperatures (Alonso-Betanzos et al.
2003; Preisler et al. 2004; Carvalho et al. 2008, 2010; Vilar et al.
2010; Magnussen and Taylor 2012; Bedia et al. 2014; Karouni

et al. 2014; Najafabadi et al. 2015), low precipitation (Albertson
et al. 2009; Vasilakos et al. 2009; Zhang et al. 2010; Plucinski
et al. 2014;Guo et al. 2016a) and low relative humidity (Alonso-

Betanzos et al. 2003; Padilla and Vega-Garcia 2011; Chang
et al. 2013;Karouni et al. 2014) favour fires and are often used in
models.

However, fire science has developed methods to estimate the
decrease inmoisture content caused byweather on litter and fine
fuels, medium compact organic layers and deep organic soil

layers or heavy fuels for fire danger rating (Dimitrakopoulos
et al. 2011). Fire danger is ‘a general term used to express an
assessment of both fixed and variable factors of the fire
environment that determine the ease of ignition, rate of spread,

difficulty of control, and fire impact; often expressed as an
index’ (FAO 2005) Some well-established fire danger rating
indices used in many countries are the three Codes (Fine Fuel

Moisture Code, FFMC; Duff Moisture Code, DMC; Drought
Code, DC) and Indices (Initial Spread Index, ISI; Built-Up
Index, BUI; Fire Weather Index, FWI) of the Canadian Forest

Fire Weather Index System (Van Wagner 1987), the Energy
Release Index in the United States’ National Forest Fire Danger
Rating System (ERC, Bradshaw et al. 1983), the Forest Fire
Danger Index by McArthur (FFDI, McArthur 1967) and the

Keetch–Byram Drought Index (KBDI, Keetch et al. 1968). Of
these, we found a very frequent use of FFMC (Cunningham and
Martell 1973; Martell et al. 1989; Vega-Garcia et al. 1995;

Wotton et al. 2010; Lee et al. 2012; Boulanger et al. 2014; Li
et al. 2014; Beccari et al. 2015), DC (Wotton et al. 2003, 2010;
Carvalho et al. 2008; Drever et al. 2009; Bedia et al. 2014) and

DMC (Martell et al. 1987; Todd and Kourtz 1991; Wotton
et al. 2003; Magnussen and Taylor 2012), FWI (Haines et al.
1983; Martell et al. 1987; Vega-Garcia et al. 1996; Carvalho

et al. 2010; Reineking et al. 2010; Ager et al. 2014; Beccari et al.
2015; Papakosta and Straub 2016), ISI (Haines et al. 1970, 1983;
Vega-Garcia et al. 1995; Li et al. 2014), FFDI (Bradstock
et al. 2009; Penman et al. 2013; Plucinski 2014; Plucinski

et al. 2014), KBDI (Prestemon and Butry 2005) and ERC
(Andrews et al. 2003).

The Canadian FFMC and FWI were the significant danger

variables most often selected across the short-term models
analysed (17 and 13 instances in 47 models), with raw weather
variables such as precipitation (13) and temperature (24). The

Canadian FWI indices and codes accounted for half the vari-
ables across all the models analysed (57 of 128 weather-related
significant variables in 47 models). Among the spatial or
geographic variables, elevation (11 models) and distance to

roads (8) were the most relevant. Non-specific land-cover
classes were occasionally included in some models, indicating
specific regional or local conditions (e.g. two models linked to

‘dense forest’ and two to ‘grasslands’), but spatial variables
generally had scarce representation in these models. In some
short-term models (7), temporal variables related to specific

months (e.g. August and September, Vasilakos et al. 2009) or
holidays (e.g. weekends and public holidays, Plucinski et al.
2014) were included. Outdoor recreation activities occur more

frequently during public or summer holidays (Mandallaz andYe
1997; Prestemon and Butry 2005; Albertson et al. 2009;
Plucinski et al. 2014), and weekends (Prestemon and Butry
2005; Albertson et al. 2009; Plucinski et al. 2014). The fact that

outdoor recreation is especially popular in spring (Martell et al.
1989; Albertson et al. 2009) and summer (Martell et al. 1989;
Vilar et al. 2010; Ager et al. 2014) matches human activities

with the most favourable seasons for ignition in many countries.
It has been suggested (Plucinski 2014) that legal regulations on
fire use or total bans on use of fire should be a relevant

managerial factor reducing human ignition pressure on regu-
lated days. However, total bans on fire use have often proven
ineffective, when not directly counterproductive to prevent

wildfires (FAO 2007), suggesting that it is preferable to esta-
blish appropriate legal and technical measures to control the
misuse of fire and to achieve other land-use goals (Morgera and
Cirelli 2009). Many countries have systems in place to grant fire

permits under stipulated conditions. To the best of our know-
ledge, this factor has not been considered before, perhaps
because fire permits are usually granted outside the fire season

upon which fire occurrence models focus. Also, these data may
be difficult to obtain, as regulations and conditions vary locally,
but the legal fire-use status of a given day should be a relevant

variable to consider in the future.

Predictors for long-term studies

Weather variables also play a role in long-term studies (134
models), but averaged over a meaningful fire-pattern period,
like several years used for planning, or a season (Chou 1992;

Preisler and Westerling 2007; Jiang et al. 2012; Verdú et al.

2012; Chas-Amil et al. 2015). High evapotranspiration (Badia-
Perpinyà and Pallares-Barbera 2006; Xiao et al. 2015) and

insolation (Heat Load Index, Lozano et al. 2007; Yang et al.

2015) increase the probability of human-caused ignition.
Annual or seasonal temperature and precipitation variables

abound (Pew andLarsen 2001;Amatulli et al. 2006; Prasad et al.
2008; Oliveira et al. 2012; Faivre et al. 2014; Xiao et al. 2015;
Ancog et al. 2016), with drought estimations (e.g. Palmer
Drought Severity Index, Preisler andWesterling 2007; Miranda

et al. 2012) and climatic classifications in the 127 models ana-
lysed. Summer precipitation has a fire-inhibiting factor (Prasad
et al. 2008; Parisien andMoritz 2009; Turco et al. 2014; Barreal

and Loureiro 2015). However, annual precipitation, and espe-
cially spring precipitation, is related to an increase in HCFs
(Cardille et al. 2001; Krawchuk et al. 2009; Avila-Flores et al.

2010; Oliveira et al. 2012; Hu and Zhou 2014; West et al. 2016;
Bashari et al. 2016). Precipitation in spring increases vegetation
biomass, especially in fine fuels like grasses or shrubs, which
may be available later to burn.Weather conditions favourable to
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fire occur mainly in summer (Albertson et al. 2009; Badia et al.
2011;Ager et al. 2014), but also happen at other times of the year
when fuels are dry, such as early or late winter in some regions

(Maingi and Henry 2007; Reineking et al. 2010; Zhang et al.

2010). In Europe (Reineking et al. 2010; Ganteaume et al.

2013), for example, fires have two well-defined peaks, one

higher in summer, and another lower inwinter. These peaksmay
be associated with specific fire causes, such as arson, agricul-
tural burnings and accidental fires, which are more frequent in

summer (Ganteaume et al. 2013), and fires caused by shrub
removal for regenerating pastures and feeding livestock in
winter and early spring (DeWilde and Chapin 2006). Never-
theless, in most long-term models, weather-climate variables

(177 variables) are less important than spatial variables linked to
human patterns of landscape use (230 land-use and interface
variables and 288 related to access, population and infrastruc-

ture in 134 models).
Elevation and slope were most often included in spatial

models (69 instances out of the 109 topography-related vari-

ables in 134 models). Usually, lower elevation (Kalabokidis
et al. 2007; Sebastián-López et al. 2008; Kwak et al. 2012;
Narayanaraj and Wimberly 2012; Liu and Wimberly 2015) and

smaller slope gradient (Preisler et al. 2004; Syphard et al. 2008;
Dondo Bühler et al. 2013; Oliveira et al. 2014; Argañaraz et al.
2015) increase HCF occurrence. Since surface temperature and
humidity are affected by terrain, thesemay be reflecting climatic

conditions. AsHCFs tend to occur in lowlands and gentle slopes,
where the population tends to cluster, topographic variablesmay
also be proxies for human presence and activity or potentially

favourable topographic positions for roads. However, this
depends on the fire cause. González-Olabarria et al. (2015)
found that fires related to pasture burning and forest work are

mainly located in mountain areas. Arson (Vasconcelos et al.

2001) and negligent fires (Juan et al. 2012; Serra et al. 2013)
occur most often on flat or moderate slopes.

Urban, forest and agricultural land uses coexist and intermix

in these anthropic landscapes, and interfaces between them
seem to favour HCF occurrence in those models that have taken
them into consideration (63 interface out of 230 land-use

variables) (Vilar del Hoyo et al. 2011; Faivre et al. 2014; Duane
et al. 2015; Mishra et al. 2016; Modugno et al. 2016; Rodrigues
et al. 2016). Configuration metrics have not been applied as

extensively (only 13 variables) as composition or land-cover
variables, but fire-prone landscapes often present high fragmen-
tation (Martı́nez et al. 2009; Ruiz-Mirazo et al. 2012; Martı́nez-

Fernández et al. 2013) and non-complex shapes linked to the
artificial boundaries set by humans (Henry and Yool 2004;
Gralewicz et al. 2012b; Costafreda-Aumedes et al. 2013).

Undoubtedly, the prevalent factors in the long term analysis

of HCFs are those related to the population, dwellings and
access networks (288 variables in 134 models). The location of
human activities is highly dependent on site-related variables

that determine the number and distribution of human sources of
ignition. Human presence can be analysed from explicit spatial
factors such as proximity to, or density of, infrastructure such as

roads (Dickson et al. 2006; Yang et al. 2008, 2015; Gralewicz
et al. 2012b; Hegeman et al. 2014; Syphard and Keeley 2015;
Zhang et al. 2016;Mhawej et al. 2016; Vilar et al. 2016b), tracks
(Pew and Larsen 2001; Romero-Calcerrada et al. 2008, 2010;

Rodrigues et al. 2014), trails (Syphard et al. 2008; Vilar del
Hoyo et al. 2011;Arndt et al. 2013) and railways (Sturtevant and
Cleland 2007; Guo et al. 2015; Alcasena et al. 2016), all of

which are associated with an increase in fire occurrence. For
example, in Spain (MAGRAMA 2015), the United States
(Morrison 2007) and south-eastern Australia (Penman et al.

2013),more than half ofHCFs start along road systems. They act
as conveyers for arsonists, careless drivers and campers accord-
ing toMorrison (2007). HCFs occur most often near settlements

(Pew and Larsen 2001; Romero-Calcerrada et al. 2008; Yang
et al. 2008; Liu et al. 2012; Wu et al. 2014) or highly built-up
areas (Sturtevant and Cleland 2007; Chas-Amil et al. 2015).

Regarding socioeconomic indicators, population density is

the most commonly used indicator in relation to the occurrence
of HCFs (Prasad et al. 2008; Kwak et al. 2012; Dondo Bühler
et al. 2013; Mundo et al. 2013; Knorr et al. 2014; Alcasena et al.

2016; Nunes et al. 2016) (96 significant variables in the models
analysed). High population densities are related to high wildfire
occurrence in general. However, studies on high population

density in large urban areas, such as those by Gonzalez-
Olabarria et al. (2011) for north-eastern Spain, Argañaraz
et al. (2015) for Argentina, andBeccari et al. (2015) for northern

Italy, found low fire occurrence. This may have been caused
by the lower availability of fuel to support HCFs in highly
developed urban areas (Syphard et al. 2007, 2009; Price and
Bradstock 2014). Donoghue and Main (1985) observed an

increase of HCF occurrence related only to non-metropolitan
population density. In intensive agricultural areas, as the number
of farmers (Martı́nez et al. 2009; Koutsias et al. 2010) and small

landholders (Stolle et al. 2003) increases, the number of HCFs
increases. González-Olabarria et al. (2015) have found that the
distribution of arson, smokers, powerlines and camp fires in

North Eastern Spain occur near coastal areas, where the popula-
tion density is higher.

Productive activities on the land, especially agriculture, also
seem to be related towildfire occurrence. Croplands (Catry et al.

2009; Vasilakos et al. 2009; Gallardo et al. 2016) or proximity to
agricultural plots (Vasconcelos et al. 2001) are associated with a
higher probability of HCF ignitions. Martı́nez et al. (2009),

Rodrigues and de la Riva (2014) and Rodrigues et al. (2014)
found that the density of agricultural machinery in Spain, as a
proxy for intensive land use, is related toHCF occurrence.When

considering livestock production, livestock density (goats,
sheep, cattle) is often directly associated with HCF occurrence
(33 variables in the 134 long-termmodels) (Martı́nez et al. 2009;

Oliveira et al. 2012; Boubeta et al. 2015) but the relationship is
non-linear. Dlamini (2010) andRomero-Calcerrada et al. (2008)
concluded that intermediate livestock densities were associated
with an increased occurrence of HCFs in Swaziland and central

Spain respectively. Shrub removal by fire for pasture regenera-
tion tends to be performed in rural areas with a lower population
density than and further away frommetropolitan areas (Cardille

et al. 2001; Stolle et al. 2003; Sitanggang et al. 2013; Zhang
et al. 2013).

Outdoor recreational activities (Romero-Calcerrada et al.

2008, 2010; Vilar del Hoyo et al. 2011) have been found to be
associated with a higher probability of HCF ignitions. Proximity
to campgrounds (Pew and Larsen 2001; Gonzalez-Olabarria
et al. 2011;Mann et al. 2016) or fishing areas (Chang et al. 2013;
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Sitanggang et al. 2013) is often related to negligent or care-
less fires. The relationship between HCFs and population

density varies depending on the ignition cause. For instance,
Narayanaraj and Wimberly (2012) concluded that fire ignitions
occurred in low population density areas because their fires were

linked to hiking, camping and hunting in public forests that are
located far from highly populated areas.

Additionally, HCFs have been modelled by including other

variables (29) related to economic and educational levels of the
population, which are highly relevant for the design of aware-
ness and prevention campaigns. Wildfire occurrence has been

found to relate to social level (Mercer and Prestemon 2005;
Vadrevu et al. 2006; Oliveira et al. 2012; Dondo Bühler et al.
2013; Chas-Amil et al. 2015), poverty levels (Dondo Bühler
et al. 2013), gross domestic product per capita (Chuvieco et al.

2008; Guo et al. 2016a, 2016b, 2016c), unemployment (Mercer
and Prestemon 2005; Prestemon and Butry 2005;Martı́nez et al.
2009; Oliveira et al. 2012; DondoBühler et al. 2013; Chas-Amil

et al. 2015; Nunes et al. 2016), age (Koutsias et al. 2010;
Martı́nez-Fernández et al. 2013; Nunes et al. 2016) or literacy
level (Vadrevu et al. 2006). Law enforcement as a preventive

factor has been included in the models from two perspectives: as
police presence (Mercer and Prestemon 2005; Prestemon and
Butry 2005), which discourages arson before it happens; and
as the number of prosecutions and convictions after it has

happened (Donoghue and Main 1985).

HCF occurrence modelling methods

The first fire occurrence models started with linear regression
(Crosby 1954; Haines et al. 1970, 1983; Altobellis 1983),

modelling the number of natural fires and HCFs together. In the
second half of the 1980s, Donoghue and Main (1985) and
Martell et al. (1987) respectively introduced the Generalised

LogisticModels of binary logistic regression for the HCF binary
occurrence and Poisson logistic regression for predicting the
number of HCFs. Both methods have been frequently applied
since then (Liu and Zhang 2015; Levi and Bestelmeyer 2016;

Marchal et al. 2017), as they are easy to use and understand
(Chang et al. 2013). In subsequent years, models evolved in

parallel to mathematical applications, analysis and modelling
techniques, computing power and increased availability of

spatial datasets, thereby increasing the number of fire occur-
rence studies. Complex techniques such as Classification and
Regression Trees (CARTs, Amatulli et al. 2006; Sitanggang

et al. 2013; Karouni et al. 2014; Argañaraz et al. 2015),
Artificial Neural Networks (ANNs, Vasconcelos et al. 2001;
Sakr et al. 2011; Ruiz-Mirazo et al. 2012), Support Vector

Machines (SVMs, Rodrigues and De la Riva 2014) or Gener-
alised Additive Models (GAMs, Penman et al. 2013) have been
introduced as alternatives to traditional statistical methods,

especially when dealing with large databases, non-linear pat-
terns and variables that are highly correlated or not normally
distributed. Currently, the observation that fires often occur in
aggregated or clustered patterns has led to non-parametric

models that include the spatiotemporal relations between igni-
tions (Yang et al. 2007; Beccari et al. 2015). Table 3 shows the
distribution of the most used methods, organised by temporal

span and dependent variable. Fig. 1 displays the temporal
emergence of techniques in recent decades, grouped by output or
dependent variable: binary (a) or number of fires (b). In total, 22

different techniques have been applied to short-term prediction
for operational purposes, and 34 to long-term models for plan-
ning, but logistic regression are prevalent in both, followed by
Poisson regression and multiple linear regression. At the daily

scale, ANNs have also been frequently used.
Additionally, this methodological evolution has increased

HCF prediction accuracy. Bar Massada et al. (2013) suggested

that the outcomes of different modelling techniques should be
compared or combined to produce ensemble predictions and
improve accuracy. Whereas the linear regression model by

Altobellis (1983) showed an accuracy of 0.27 for all fire causes
(number of fires), the Poisson mixed-model by Boubeta et al.

(2015) reached an accuracy of 0.86 for HCFs. Padilla and

Vega-Garcia (2011) obtained predictive accuracies ranging
from 0.474 to 0.826 for 53 ecoregions in Spain with a logit
model (binary output). However, different techniques often
yield similar results with the same input data, suggesting

limitations in the data or the independent variables, not in the
models (Bar Massada et al. 2013).

Table 3. Techniques that have been selected in at least two studies of HCF occurrence modelling, by temporal span and type of fire dependent

variable (binary or multiple fire occurrence)

Bold text indicates techniques used in more than five studies

Short-term (daily) Long-term (annually or longer)

Binary occurrence (31 studies) Number of fires (14 studies) Binary occurrence (81 studies) Number of fires (34 studies)

Logistic regression (14) Poisson regression (6) Logistic regression (40) Poisson regression (10)

Multiple linear regression (3) Autoregressive regression (2) Classification and Regression

Trees (CART) (6)

Multiple linear regression (9)

Artificial neural network (2) Multiple linear regression (2) Inhomogeneous Ripley’s K function (6) Negative binomial model (4)

Multiple linear regression (6) Generalised additive models (3)

MaxEnt (5) Geographically weighted regression (2)

Boosted regression trees (4) Zero-inflated models (2)

Random forest model (3)

Weights of evidence (3)

Bayesian belief network (2)

Geographically weighted logistic model (2)
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Whatever the output type of these models (binary or numeric),
published results generally include the description of a ‘predic-

tive’ best model with its diagnostics (criteria for model selec-
tion). Model outputs are only occasionally mapped to provide a
visual representation of probability levels in the study area

(Martı́nez et al. 2009). Validation of predictive capacity with
independent datasets is uncommon, though some previous
works offer classification tables of observed and predicted
responses, or receiver operating characteristic (ROC) curves

(Mercer and Prestemon 2005; Penman et al. 2013; Levi and
Bestelmeyer 2016). Fits too specific for the databases used in
model development and poor generalisation capacity may be a

problem in many non-validated models, proposed as ‘explana-
tory’; most authors provide inferences about relevant predictors
that are supposed to have a causal influence on fire occurrence,

because they assume their models have explanatory power.
However, the most commonly used techniques – ordinary
or generalised linear models, logistic and Poisson regression
models – all suffer from multicollinearity problems, so they are

unreliable, according to the discussion on predictive and expla-
natory models by MacNally (2000), unless ‘exhaustive search’
or ‘all-models’ schemas are used.

On the question, then, of what methods perform better, we
should probably conclude that those applied most often are not
necessarily more commendable, unless multicollinearity is

controlled and predictive capacity proved. Techniques claiming
to be robust with respect to multicollinearity, like artificial
neural networks, should be given more attention.

A meta-analysis approach

As part of this systematic review, we attempted to provide a

quantitative summary of the 181 HCF models through a statis-
tical synthesis or meta-analysis. Combining the results of these
HCF models would require them to be conceptually identical

comparable studies (O’Rourke 2007) dealing with a common
process, in this case the probability of a HCF.

However, across the 152 documents analysed, identical
procedures were not followed, i.e. the dependent variable was

either binary (fire yes or no) or numeric (number of fires). For
the short-term analyses, 22 modelling techniques and 109
variables were used, and, for the long-term analyses, 34 techni-

ques and 378 variables were used. Original databases of obser-
vations for analysis were never available, as only best models
obtained with their significant variables were described in
publications, documented with a wide range of diagnostic

measures of goodness-of-fit and predictive power.
Table 1, supported by Table S1, shows the diverse nature of

the studies considered in this review, highlighting the difficulty

of obtaining sets of homogeneous model cases to perform a
meta-analysis. The synthesis proved difficult because of non-
equivalence of the metrics and units of the estimators and

outcomes across studies, the estimation of very diverse models,
and the lack of information in study reports. In order to obtain
comparable models, we started by selecting the most commonly
used techniques in the short term and long-term logistic regres-

sion and Poisson model groups with the same or similar predic-
tion unit size. For each model, we listed its parameters
(coefficients), value, standard error or P-value, prediction unit

size (base) and number of observations used in adjusting the
model. There were not enough comparable models in the short
term group, or Poisson long-term group. Among the logistic

regression models for long-term planning, we could only per-
form a meta-analysis for some of the regression coefficients
(variables). We considered three regression coefficients using

the same metrics and measurement units – elevation (m), slope
(%) and distance to urban areas (km) – to perform three distinct
meta-analyses with 6, 3 and 3 studies respectively (see Table 4).
It should be noted that, within the three sets of studies, we had a

large variability in the coefficient values and standard errors,
thereby suggesting the presence of heterogeneity in these meta-
analysis approaches.

We used random-effect meta-analyses (Whitehead 2002;
Borenstein et al. 2009) rather than fixed-effect models because
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Fig. 1. Evolution of emerging techniques for binary models (a) and for numeric models (number of human-caused fires) (b).
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we envisaged having uncontrolled between-studies variation as
well as the possibility of being able to generalise our results to
other statistically similar populations. Thus, we expected to

estimate a particular coefficient for each study ŷi, and assumed
that each of these values were random realisations of a common
unknown coefficient y. We also computed a measure of hetero-

geneity for each meta-analysis to assess the validity of our
assumption (Borenstein et al. 2009). In particular, for each
meta-analysis we considered the significance of the statistic Q

(a Q-test) (Whitehead 2002), and we used the I2 statistic as a
quantitative measure of true heterogeneity or between-studies
variability (Borenstein et al. 2009). Moreover, we considered a

restricted maximum likelihood estimator for between-studies
variability t̂2, since it is approximately unbiased and quite
efficient (Viechtbauer 2005).

All the meta-analyses were computed using the metafor

statistical package (Viechtbauer 2010) for the R statistical
environment (R Foundation for Statistical Computing, Vienna,
Austria, see http://www.r-project.org, accessed 3 February

2017).
Table 5 shows the results of the Q-test, the values of t̂2 and

Î2, and the estimated coefficient ŷ for the three random-effect

meta-analyses. This highlights that, for two meta-analyses
(elevation and slope), we should reject the assumption of
homogeneity and accept the presence of uncontrolled
between-studies variability, although, for the other meta-analysis

(distance to urban areas), we can assume homogeneity. Despite
this result, we have also assumed a random-effect approach for
this variable (distance to urban areas) because this result in a

more conservative test and the outcomes of both approaches
were, in any case, virtually the same. Moreover, only the
resulting estimated coefficient value for the distance to urban

areas meta-analysis was significant and larger than zero; esti-
mated coefficients for elevation and slope were not significant.
A particular problem when evaluating these results is the small

number of studies per meta-analysis, and the high variability
between studies in terms of coefficient values and standard
error, which make the evaluation of these results difficult and
their generalisation somewhat limited. However, the results for

distance to urban areas (km) are a promising example of the
potential that meta-analysis has, though more cooperation
for harmonisation in models, temporal range, predictive units,

variables and metrics is needed among researchers in the field
before a global characterisation of fire occurrence is possible.

Conclusions and recommendations

The reasonably large quantity of HCF occurrence models pub-
lished (181 models in 152 published documents) indicates this

fire science topic has reached a good level of development,
especially in Europe and North America. In recent years, the
People’s Republic of China has become the country with

the second largest number of studies, behind Spain. The most
active world fire areas (Africa and Latin America) still require
modelling efforts. We found that few studies have focused on

these most active fire regions largely ignored by research
(Chuvieco et al. 2008; Krawchuk et al. 2009; Knorr et al. 2014;
Bedia et al. 2015), where wildfire databases are not even
available (FAO 2010). Improving global wildfire databases in

terms of fire location and causes of ignition is essential to have a
global diagnosis of HCF occurrence around the world. Remote
sensing can be a valuable tool in fire data acquisitionwhen field-

collected fire records are unavailable, though these sources are
not free from limitations linked to technical thresholds. Remote
sensing cannot provide information on causality as this requires

field investigation, but reducing the high rates of unknown cause
in fire registries in order to build models focused on specific
causes should be a global fire management goal, with potential

for more efficient risk mitigation.
Once the models are developed, links to management need

to be strengthened, and specific capacities demonstrated. For

Table 5. Results of the Q-test (degrees of freedom between

brackets), the values of ŝ2 (between-studies variability) and the statistic

Î2 (proportion of between-studies variability with respect to total

variability), the estimated effect-size ĥ, and corresponding P-value for

the three random-effect meta-analyses

Q (d.f.) P-value t̂2 Î2(%) ŷ P-value

Elevation 1532.2 (5) ,0.0001 8.4� 10�6 99.57 �0.0008 0.5828

Slope 1373.5 (2) ,0.0001 0.074 99.85 �0.1026 0.5049

Distance

to urban

5.1 (2) 0.0755 0.000 0.30 �0.0207 ,0.0001

Table 4. Overview of studies selected for each meta-analysis

Studies Variable Coefficient s.e. Units Base

Meta-analysis I Guo et al. (2016a) Elevation �0.0019 0.0001 m Points

Guo et al. (2016c) �0.0034 0.0005

Kalabokidis et al. (2007) �0.4940 0.2380

Narayanaraj and Wimberly (2012) �0.0010 0.0002

Zhang et al. (2013) �0.0010 0.1770

Zhang et al. (2016) 0.0030 0.0001

Meta-analysis II Kalabokidis et al. (2007) Slope 0.1110 0.0420 % Points

Narayanaraj and Wimberly (2012) �0.0139 0.0031

Zhang et al. (2013) �0.4000 0.0100

Meta-analysis III Pan et al. (2016) Distance to urban �1.1710 0.5080 km Pixels

Pew and Larsen (2001) �0.0200 0.0040

Pew and Larsen (2001) �0.0210 0.0030
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example, fire suppression resources are often challenged by
simultaneous occurrences of fires (Molina-Terrén and Cardil
2015), but daily fire load can be predicted in advance by fire

occurrence models, identifying areas where fires are most likely
to occur. The explanatory and predictive capacity of fire occur-
rencemodels is not yetwidely used inmanagement applications,

though some fire management systems have made provisions
for their use (Chuvieco et al. 2010), partly because comprehen-
sive national risk assessment frameworks are lacking in most

fire-affected countries, if not all. Demands for strategic planning
and operational applications will continue to increase, as para-
digms are changing to allow for managed or prescribed fire
(let-burn policies), budgets are increasingly constrained,

wildland–urban interfaces are expanding and climate change
introduces uncertainties.

What are the most appropriate variables and methods for

applications in forest and fire management and civil protection?
There are many good choices available. The first wildfire
occurrence models were simple and did not predict very well,

then, logistic regression models were introduced and became
commonly used, and, over the years, they have been joined by
more complex methodologies, such as CARTs, ANNs, SVMs,

GAMs and other parametric and non-parametric models, all
with good accuracies, but little managerial use. Model complex-
ity andmodel perception as a black box (e.g. for ANN) with lack
of adequate technical transference may partly explain this lack

of use of some novel techniques. Models based on point pattern
analysis hold the greatest potential for the future in terms of
resolution, but they are not yet as developed and technically

accessible as traditional statistical models, which in turn have to
be controlled for multicollinearity problems.

HCF occurrence models include many different predictors,

according to model goals that set different time ranges: they are
either operational (short-term, mainly daily time ranges) or aim to
influence planning (long-term, mainly a period of several years).
Weather-related variables drive the daily operational models, but

some firedanger rating indices haveprovedoptimal for integrating
weather conditions conducive to fires, particularly FFMC and
FWI, present in the majority of studies conducted. Over the long-

term, HCFs tend to be associated with accessible and populated
areas, close to houses and their socioeconomic activities (both
productive and leisure locations), interfaces and fragmented

landscapes.
Models and predictors, though, vary locally and heavily

depend on causative agents, so more studies stratified by cause

or fire-prone activities are a research need, since they are scarce.
A quantitative summary of HCF models results through a

meta-analysis reveals this diversity of techniques, variables and
units used, and spatiotemporal dimensions (time frame and

prediction spatial units). However, original databases are not
available in published work. Data availability and some normal-
isation in terms of the spatial units and variables used, as well as

their metrics and units, would improve comparability among
studies and meta-analysis potential.

In closing, future research into fire occurrence should seek

deeper knowledge on causality, improving global wildfire
databases, novel model development, some normalisation in
techniques, metrics and units, and better integration of fire
occurrence within risk assessment frameworks for improved

transference to management. Fire occurrence models may be
useful inputs to managerial applications in fire prevention,
forest and fuel treatments, media campaigns, planning for risk

reduction and damage mitigation, supporting decisions or stra-
tegies and policies for general fire, forest or land management,
fire suppression efficiency, deployment optimisation and pre-

suppression planning, optimisation of human resources and
budgets, and, lastly, for modelling climate change effects on
vegetation covers and fire regimes.
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Argañaraz JP, Gavier Pizarro G, Zak M, Landi MA, Bellis LM (2015)

Human and biophysical drivers of fires in semiarid Chaco Mountains of

central Argentina. The Science of the Total Environment 520, 1–12.

doi:10.1016/J.SCITOTENV.2015.02.081

Arndt N, Vacik H, Koch V, Arpaci A, GossowH (2013)Modeling human-

caused forest fire ignition for assessing forest fire danger in Austria.

iForest 6, 315–325. doi:10.3832/IFOR0936-006

992 Int. J. Wildland Fire S. Costafreda-Aumedes et al.

http://dx.doi.org/10.1071/WF14168
http://dx.doi.org/10.1002/ENV.2269
http://dx.doi.org/10.1016/J.JENVMAN.2009.02.011
http://dx.doi.org/10.1016/J.JENVMAN.2009.02.011
http://dx.doi.org/10.1016/J.FORPOL.2016.09.005
http://dx.doi.org/10.1016/J.FORPOL.2016.09.005
http://dx.doi.org/10.1016/S0957-4174(03)00095-2
http://dx.doi.org/10.1029/2005JG000133
http://dx.doi.org/10.1016/J.FORPOL.2016.01.002
http://dx.doi.org/10.1016/J.FORPOL.2016.01.002
http://dx.doi.org/10.1071/WF02059
http://dx.doi.org/10.1071/WF02059
http://dx.doi.org/10.1016/J.SCITOTENV.2015.02.081
http://dx.doi.org/10.3832/IFOR0936-006


Avila-Flores D, Pompa-Garcia M, Antonio-Nemiga X, Rodriguez-Trejo

DA, Vargas-Perez E, Santillan-Perez J (2010) Driving factors for forest

fire occurrence in Durango State of Mexico: a geospatial perspective.

Chinese Geographical Science 20, 491–497. doi:10.1007/S11769-010-

0437-X

Badia A, Serra P, Modugno S (2011) Identifying dynamics of fire ignition

probabilities in two representative Mediterranean wildland–urban inter-

face areas. Applied Geography 31, 930–940. doi:10.1016/J.APGEOG.

2011.01.016
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