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Abstract. This study presents a model developed using a risk-based framework that is calibrated by experts, and
provides a spatially explicit measure of need for aerial detection daily in Ontario, Canada. This framework accounts for

potential fire occurrence, behaviour and impact aswell as the likelihood of detection by the public. A three-step assessment
process of risk, opportunity and tolerance is employed, and the results represent the risk of not searching a specified area
for the detection of wildland fires. Subjective assessment of the relative importance of these factors was elicited from

Ontario Ministry of Natural Resources and Forestry experts to develop an index that captures their behaviour when they
plan aerial detection patrol routes. The model is implemented to automatically produce a province-wide, fine-scale risk
index map each day. A retrospective analysis found a statistically significant association between points that aerial

detection patrols passed over and their aerial detection demand index values: detection patrols were more likely to pass
over areas where the index was higher.
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Introduction

Early detection of wildland fires while small is essential. They
are less likely to escape control efforts, reducing socioeconomic

impacts and lowering suppression costs (Kourtz 1987, 1994;
Hirsch et al. 1998; Cumming 2005; Arienti et al. 2006; Martell
and Sun 2008). Climate change is forecast to increase fire

occurrence (Woolford et al. 2014) and area burned in Ontario
(Podur and Wotton 2010), which will lead to an increased
demand for early detection.

We develop a risk-based spatially explicit aerial detection

demand index. This index incorporates key factors that drive

aerial detection patrol routeing: potential fire occurrence, fire

behaviour and impacts on resources and assets. Risk, opportunity,

tolerance and the probability of fires being detected by the public

are also incorporated in this index. The relative importance of

the factors that are included in the aerial detection demand index

(ADDI) was elicited from experienced fire management staff.

Background

Wildland fire management agencies employ both direct and

indirect detection systems.Direct detection agents actively search
for fires at specific times and specified locations by, for example,
staffing lookout towers and flying aerial detection patrols. Indi-

rect detection is passive whereby information regarding newly
discovered fires is received as a result of other activities, such as
reports from the public or suppression staff travelling in aircraft.
Fire managers actively influence and support indirect detection

systems by maintaining and publicising public reporting hotlines
and by training firefighters to remain vigilant and report new fires
they discover in the course of their work (Thomas and McAlpine

2010; Johnston et al. 2018).
The term ‘detection demand’was described byKourtz (1973),

as the number of fires burning undetected in an area, with more

fires representing a greater need to view an area to detect fires.
Kourtz (1973) developed a dynamic programming model to
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specify a patrol route for a high-level infrared aircraft that would
maximise the expected number of fires detected given several
factors including aircraft range, cloud coverage and the prediction

of the expected number of fires burning undetected. The require-
ment for routeing detection aircraft was again outlined by Kourtz
(1994) in the Province of Quebec, where the factors thought to be

important to determine the number of patrols over each cell were
the predicted number of fires, their predicted rates of spread, fire
intensity and values at risk.

Recent detection studies have focused on the use and
performance of new technology, for example remote sensing
(e.g. Allison et al. 2016; Halle et al. 2018; Johnston et al. 2018),
image processing (e.g. Schroeder 2004), distributed sensor net-

works (e.g. Alkhatib 2014), unmanned aviation systems (UAS)
and others (Yuan et al. 2015). Advanced firemonitoring satellite
systems are emerging (e.g. Halle et al. 2018), like aerial patrols,

require dynamic spatial prioritising for deployment and sensor
targeting and could eventually be viewed as direct detection.
However, there are gaps in the needs of fire management and the

decision support available (Martell 2011; Duff and Tolhurst
2015), including how to deploy a dynamic, direct fire detection
system such as aerial detection.

Wildland fire and detection in Ontario, Canada

The Ontario Ministry of Natural Resources and Forestry

(OMNRF) is responsible for detecting and responding towildland
fires over an area of ,107 million ha (OMNRF 2014) where
there is high variability in weather, fire occurrence and area

burned, both daily and seasonally. Historically, there are fewer
than 18 active fires burning on 50% of days and more than 192
active fires on 2% of days during the fire season (April–October).

In the sparsely populated areas of northern Ontario, fire
detection is carried out primarily by indirect means (e.g.
commercial and recreational aircraft). Direct detection takes
place over the remaining,63 million ha where there is a heavy

amount of wildland–urban interface and forest that is managed
for timber production and other resources (Fig. 1). Approxi-
mately 12% of recent fires in the province of Ontario were found

by direct detection (patrol aircraft), and the remaining 88%were
found through indirect methods, namely 40% by OMNRF staff
carrying out suppression activities and 49% reported by the

public (Table 1).
Not all wildland fires are aggressively suppressed in Ontario.

The OMNRF’s Wildland Fire Management Strategy (OMNRF

2014) calls for an ‘appropriate response’ for wildland fire that
should minimise the expected total cost plus net loss while
accounting for other factors (Boychuk and McFayden 2017).
Some fires can therefore be left to be monitored because the

benefits (e.g. ecological impact of fire) outweigh the losses
(the negative impacts). However, there is a time window during
which a fire can be successfully contained before it becomes too

active or large for successful suppression (Parks 1964), necessi-
tating the need for early or small detection of fires to support
appropriate response decision-making.

Hundreds of fire lookout towers once dotted Ontario’s
landscape. The decommissioning of these towers started in the
1960s. They were eventually replaced with the more cost-
effective aerial detection program (Eno n.d.; Foster 1962;

Kourtz 1987). Several Canadian forest fire management agen-
cies still use towers, aircraft, or a mix of both (e.g. Schroeder
2004; Thomas and McAlpine 2010).

The OMNRF currently charters a fleet of 10 detection patrol
aircraft (Cessna Skymaster 337), each of which are staffed with
a pilot and detection observer to provide direct detection for the

63-million-ha aerial patrol region of Ontario described in Fig. 1.
Detection patrol routes are designed following general search
and rescue principles (e.g. National Defence Fisheries and

Oceans Canada 2014) and have a typical duration of 3.5 h.
The area covered by a single aircraft is variable pending the
route design, and there are not enough aircraft to view all of the
patrol region on a given day (Fig. 2). However, not every

location needs to be seen, not every aircraft is needed every
day and aircraft can be hired on a short-term basis.

Daily aerial detection decision-making

In Ontario, a provincial Detection Leader plans the daily

deployment and routeing of aerial detection patrols to satisfy the
needs of two regional Duty Officers who manage all wildland
fire management activities in their respective regions. Route

design varies from general coverage of areas of lower concern
yet higher uncertainty about undetected fires and their potential
behaviour, to intensive coverage of an area of higher concern
with a higher likelihood of undetected fires (Fig. 2).

To assist with the prioritisation of areas and patrol route
design, a variety of spatial data overlaid in a geographic
information system (GIS) environment is used, such as recent

lightning, resources and assets, Canadian Forest Fire Weather
Indices (see Van Wagner 1987), active fires and satellite hot-
spots. Other factors influencing priority and route design include

aircraft logistics (e.g. fuel, airport locations, Transport Canada-
regulated duty and flight times, visibility), public detection
potential, location of active fires and suppression activities.
Most aerial detection planning decisions are ‘recognition-

primed decisions’ (e.g. Hutton andKlein 1999) where the design
of patrol routes is based on familiarity with the situation and
knowledge of the spatial distribution of detection priorities.

There is a range of expertise in decision-making (Dreyfus
2004), and experts are needed for recognition-primed decisions.
The expertise among staff is always in some state of flux because

people gain experience, retire, or move on to other work.
Decision support systems integrate information about the
various factors and consistently combine them in structured

way according to expert decision-makers’ understanding of
the problem. It is our view that, even for experts, decision
support provides a baseline for comparison, and may save time,
contribute to decision-making and provide an objective record

of the decision.
The objective of the present study was to address the gap

between the decision-support needs of fire management staff

and the support available (Martell et al. 1999; Martell 2011;
Pacheco et al. 2015) by developing a risk-based framework,
calibrated by experts, that provides a measure of the spatially

explicit degree of need for aerial detection each day. Our
framework accounts for potential fire occurrence, behaviour
and impact as well as the likelihood of indirect detection by
the public.
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Table 1. Totals and percentage of fires, area burned (ha) and detection agent stratified by fire cause inOntario, Canada

between 2011 and 2018

Total number (%) 2011–18

Total Lightning-caused Person-caused

Wildland fires 7109 4088 (57.5%) 3021 (42.5%)

Area burned (ha) 1 292 668 1 236 050 (95.6%) 56 618 (4.4%)

Public-detected 3477 (48.9%) 1243 (30.5%) 2234 (73.9%)

Aerial detection patrols 839 (11.8%) 716 (17.5%) 123 (4.1%)

Other OMNRF detected 2793 (39.3%) 2129 (52.0%) 664 (22.0%)

Approximate North and South
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Fig. 1. The approximate northern boundary of aerial detection patrols in Ontario, with the wildland–urban,

infrastructure and industrial interface maps from Johnston and Flannigan (2018).
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Methods

Risk-based model structure

Risk assessment is a widely used method to help fire manage-

ment staff make many tactical and strategic decisions (e.g.
Finney 2005; Hardy 2005; Calkin et al. 2011; Ager et al. 2013).
A risk framework organises the questions that need to be posed

and answered to assess loss and address uncertainty. Risk is
typically expressed as impact multiplied by likelihood to
quantify expected loss, such as Crichton’s (1999) ‘risk triangle’,

which connects hazard, vulnerability and exposure. This risk
triangle was modified for wildfire risk by Scott (2006) and a
comprehensive approach to risk elements for wildland fire
management was outlined by Xi et al. (2019).

To identify how fire management staff assess risk for aerial
detection route planning, OMNRF Regional Duty Officers and
Detection Leaders were asked to participate in a series of

engagements. There is more than one method of elicitation
and there is no single perfect method (Hickey and Davis 2003).
Our goal was to describe the experts’ reasoning behind their

prioritising areas for direct detection. To do so, we simply asked
questions and observed performance with different levels of
formality (e.g. Hoffman and Lintern 2006). This engagement
took place over the period 2009 to 2016 as the scope progressed

from the scale of a model for a single fire response sector, to a
region and then to the province. The elicitation included
observation and collaborative sessions, such as:

� posing scenarios where detection planners were asked to
recall specific days that had various levels of ‘hazard’ and

were asked probing questions such as ‘What would you do on
a day like that in this area?’

� observing their daily actions, e.g. actual operational route

planning
� reviewing procedures and training documents
� illustrating the components of their decision-making using

influence diagrams, and
� carrying out opportunistic discussions, e.g. staff were engaged

where and when available with different levels of structure.

During these discussions, experts were advised of the goal of
the study, and assured that their responses would be treated as

anonymous to encourage openness and that the intent was not

replace their expertise with a model (a concern noted in early
conversations). Experts were asked to describe how they prior-
itise areas for aerial detection patrols and in particular, what

criteria or situation would increase or decrease their attention to
a specific area.

We organised the responses into three stages of decision-

making or assessment (below) that experts follow to determine
which areas require direct detection and the corresponding
factors needed to perform the assessment. Fundamentally,

questions to resolve are (1) what can happen; (2) how likely is
it to happen; and (3) if it occurs, what are the potential
consequences (Kaplan and Garrick 1981)?

Assessment Stage 1: Determining risk (expected loss)

� ‘What can happen?’

J Fires will grow and progressively damage resources and
assets before detection and containment.

� ‘How likely is it to happen?’

J How probable is it that there now are active but undetected

fires, and how probable is it that new fires will occur later
this day?

� ‘If it occurs, what are the potential consequences?’

J There is a potential for negative impacts from fire effects on
various resources and assets; the magnitudes of the impacts
are a function of fire intensity, fire size, geographical
location and other factors.

Assessment Stage 2: Considering opportunities that may
decrease loss

� ‘What can happen?’

J The public could detect the fire early enough to enable

suppression action that day.

� ‘How likely is it to happen?’

J What is the probability of early public detection today?

� ‘If it occurs, what are the potential consequences?’

J Potential negative impacts are reduced.

Assessment Stage 3: Determining the willingness to rely
on the opportunity and tolerance of remaining loss

� ‘Given the initial risk (Stage 1), to what extent are decision-
makers willing to rely on the likelihood of public detection?’

J Residual risk occurs if the initial risk is reduced but not
eliminated by public detection. If residual risk is too high, it
may be reduced further with aerial detection.

These stages of risk assessment are the basis for a modelling

framework (Fig. 3)with factorweighting based on further expert
elicitation (discussed in the Calibration of the combination of

factors through expert elicitation section) to calculate the
following two demand indices:

(1) Detection Demand Index (DDI): (Stage 1) quantifies the

risk if the area is not seen by direct or indirect detection

Airport

Expanding square
(intensive coverage)

Creeping line
(general coverage)

Airport

40 km

40 km

Fig. 2. Detection patrol route examples, adapted from National Defence

Fisheries and Oceans Canada (2014). In practice, routes can be modified

from these basic designs to cover more or less area, make use of multiple

airports and account for other logistical considerations.
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agents today. Potential fire impacts are proportional to the
types and amounts of resources and assets nearby, and to

fire intensity because greater intensity is associated with
greater spread, difficulty of control and impacts from
resources and assets (RAs). The likelihood of fire occur-

rence stems from conditions of fuels and recent ignition
potential. These impacts and likelihoods form risk
(expected loss), for which there is a need for detection.

(2) Aerial Detection Demand Index (ADDI): (Stages 2 and 3)

quantifies the risk if the area is not seen by direct detection
(i.e. aerial detection) today. DDI and the probability of public
detection are used to calculate the ADDI. The tolerance,

namely the level of reliance on public detection depends on
the magnitude of the risk (e.g. dry and windy v. wet or calm
conditions) and the time horizon for public detection.

The four main input factors and their effects on the need for
detection or aerial detection for a day are (Fig. 3):

(1) Fire occurrence (higher occurrence leads to a greater need
for detection)

(2) Head fire intensity (HFI) (higher HFI leads to a greater need
for detection)

(3) Impacts from nearby RAs (higher impacts lead to a greater

need for detection)
(4) Public detection probability (a higher public probability

may lead to a reduced need for aerial detection, depending

on the other factors)

The need for detection is directly proportional to the first three

factors and is modelled as a multiplicative combination of these
factors to account for interactions. For example, if the first three
factors are high, then the risk and need for detection are very high.
If the first, second or third factor is near zero, then the risk and

need for detection will be near zero. Hence, one might assume:

Need for detection/ Fire occurrence� HFI
� Impacts from RAs;

which directly aligns with the framework of risk being equal to
likelihood � impact. Here, fire occurrence is a surrogate

measure of likelihood and the combination of HFI and impacts
from RAs represents impact.

Spatial and temporal input variables

The spatial extent and scale of this risk model is the official

Ontario wildland fire management region, partitioned into a set

of ,20 by 20-km grid cells. Some cells near provincial and
water boundaries are smaller than 20 by 20 km. This scale
accommodates the OMNRF standard effective scanning range

for a person on an aerial detection patrol andmatches an existing
grid that is used for a lightning-caused fire occurrence prediction
model (Wotton et al. 2005). The model is not limited to the

general aerial patrol area of Ontario (Fig. 1) because there are
times and places where direct detection efforts may be required
in remote areas and our intent was not to limit the model to

current operational procedures. Finer-scale input data were
processed to compute the model factors in each cell. The plan-
ning horizon is 1 day.

Fire behaviour

Fire behaviour is characterised in terms of several measures
including intensity. Fire intensity is used for many fire man-

agement purposes because it is considered to be an important
indicator of fire propagation, resistance to control and damage to
RAs (e.g. Byram 1959; Hirsch and Martell 1996). For example,
a high-intensity fire can destroy a building whereas a lower-

intensity fire may only cause cosmetic or superficial damage.
One measure of fire intensity is HFI, which is the rate of energy
release per unit time per unit length of fire front (Byram 1959).

The HFI is the product of the rate of fire spread, amount of fuel
consumed and heat yield. It is the dominant single descriptor of
fire behaviour (Alexander 1982). Similarly to other studies

(Scott et al. 2013; Thompson et al. 2013;McFayden et al. 2019),
we use HFI to measure potential impact, calculated as the
forecast peak burnHFI at 1700 hours local time for the dominant

fuel type (see Forestry Canada Fire Danger Group 1992) in each
grid cell as a daily measure of fire behaviour.

Weighting the types and amounts of resources and assets

We consider RAs to be valued geospatial entities that could be
affected by fire (e.g. see Scott et al. 2013; McFayden et al.

2019). Resources refer to natural and biological elements
(e.g. timber, habitat, water), whereas assets refer to human
developments (e.g. infrastructure, structures, developed recrea-

tional areas). We developed a model to score each RA type and
calculated a weighted total RA for each grid cell to represent
potential loss.

Using data layers displayed on OMNRF situational aware-
ness maps as the RA, an anonymous survey was conducted of an
expert group of 10 senior OMNRF staff includingDutyOfficers,

Fire Behaviour Analysts, Fire Intelligence Specialists and Fire
Operationsmanagement personnel. The respondents were asked
to provide an importance score for each RA, scored on a Likert
scale of 0–10. The RA data considered were counts for point

features, kilometres for linear features, and hectares for areal
features within each cell (see Table 2).

A Likert scale ranks the RAs’ relative importance to each

other rather than on an absolute value scale. ‘Importance’ was
used to describe socioeconomic impact from the loss or full
disruption of the RA (i.e. a score of 10, or very high importance,

is synonymous with a high negative socioeconomic impact if
lost or destroyed). As the effects of fire and the resulting impacts
can vary greatly, this simplification was used to obtain a
tractable measure of impacts.

Stage 1 Risk:
the expected loss

Weighted
resources
and assets

Fire
intensity

‘Risk’
detection
demand

‘Remaining risk’
aerial detection

demandLikelihood
of fire

occurrence Expected loss Remaining loss

Potential
impact

Public detection
probability

Reliance on
public detection

Stage 2
Opportunity:
the loss decreases

Stage 3 Tolerance:
the decrease adjusted
for preference

Fig. 3. Illustration of the factors included in each of the three stages of risk

assessment to determine the aerial detection demand.
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The scores in each cell were calculated by multiplying each

individual RA type by its the median score from the surveys,
then summing these over all RAs for a total weighted score.
Adjustments to linear and point data were made in border cells

smaller than 20 by 20 km. The underlying principle was that
urgency for detection increases with both increasing amounts
and importance of RAs. For example, three structures cause

more concern that a single structure.

Amaximum cell score (40 000) was based on the assumption
that once a certain threshold of RA density has been reached
within a cell, a higher value would not significantly increase the

demand for detection. This maximum score approximately
corresponds to a cell with a small city within it.

The distribution of the set of final cell scores across the study
area was calculated and examined to determine the extent to

which it reflected the expert interpretation of the spatial impact
potential (Fig. 4a). It is skewed towards lower values and
exhibits a small build-up of frequency at the upper limit of

40 000, with a median of 1532, and 5, 25, 75 and 95% quantiles
of 11, 363, 3052 and 24 193 respectively. This indicates that
much of the province is considered to have lower impact

potential, while some areas have a far higher impact potential.
To explore what drives the increased values of grid cells, the
25 RAs were grouped into general categories (Land, Recrea-

tional, Industry and Infrastructure, and Community) and the
percentage contribution of each group to the total weight of each
grid cell was calculated and presented as a function of cell total
weight (Fig. 4b). Not surprisingly, there is a strong correlation

between grid cell total weighted score and the contribution of the
RA classed as Community, where impact is typically highest.

Likelihood of fire occurrence

The processes underlying wildland fire occurrence vary by
cause of ignition, so the likelihood of fire occurrence was
calculated by combining the outputs of separate models for
person- and lightning-caused fire occurrence prediction (FOP),

developed on the same grid. A spatially explicit person-caused
FOP model was developed using the logistic generalised addi-
tive modelling (GAM, see Wood 2017) methodology pioneered

by papers that include Brillinger et al. (2003) and Preisler et al.
(2004). This methodology has been employed for FOP models
in other regions (Vilar et al. 2010; Woolford et al. 2011). A

detailed review of FOP modelling including this logistic GAM
methodology appears in Taylor et al. (2013).

In Ontario, person-caused fires are classified as being caused
by residents (e.g. burning brush), railway operations, recreational

activities and industrial activities, as well as miscellaneous,

Table 2. Resources and assets (RAs) included in the expert elicitation weighting procedure

RAs (alphabetical)

Counts in cell Number of kilometres in cell Number of hectares in cell

Airports Electrical transmission line Federal parks land

Buildings and structures Local roads First Nation reserve land

Cultural and historical sites Natural gas pipeline Forest management unit

Dams Primary roads Provincial parks land

Dumps, refuse sites Railway line Other Federal land

Electrical transmission stations Resource and recreation roads

Fibre optic stations Winter roads

Natural gas pump stations

Recreation points

Seaplane base

Tourist outfitter

Towers (radio, cell, etc.)

Trapper cabins

0.4
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Weighted RA grid values

(a)

(b)
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0
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Fig. 4. The provincial distribution of weighted grid cell resources and

assets (RAs) values (a), and their corresponding contributing components

(b). The distribution of grid values (a) is skewed towards lower values.

Notably, there is a strong correlation between grid cell weight and its

contributing RA, indicating that the model accurately reflects the impor-

tance of structural and community assets (b).
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incendiary and unknown causes. A stratified modelling approach
was therefore used to account for the different seasonal and spatial
baselines (e.g. Brillinger et al. 2003) as well as different variables

that drive these various causes. A ‘spring peak’ category includes
railway, residential, miscellaneous and unknown-cause fires,
whereas a ‘summer peak’ category includes recreation, industry

and incendiary fires. The full suite of models includes separate
spring and summer peak models for each of the North-west and
North-east Fire Regions, along with an aspatial model for small

clusters of cells in far-north communities. The predictors for these
models include the Fine FuelMoisture Code, forest landscape type
as characterised by ecoregion, time of year (to capture intra-annual
seasonality), length of railway, length of roads, ameasure of human

activity inwildland areas (elicited fromOMNRF personnel), along
with seasonal and spatial baselines (see Woolford et al. 2016).
The predicted fire occurrence probabilities from these models are

summed within each cell to obtain the expected number of person-
caused fires in each grid cell location on a given day.

The spatially explicit lightning-caused FOP model used was

developed for Ontario byWotton and Martell (2005). Lightning-
caused fire factors include lightning strike (number, polarity and
density), Sheltered Duff Moisture Code (Wotton et al. 2005),

Drought Code (Van Wagner 1987) and forest landscape type as
characterised by ecoregion. The outputs of this model are the
expected number of lightning-caused fires for the day in each grid
cell, both the expected number of holdover fires smouldering

undetected on the landscape and the expected number of those
fires to arrive (i.e. be reported) during the day. The former is used
for detection planning and the latter for fire response planning.

Public detection probability model

Many fires in Ontario (nearly half) are discovered and reported
by the public. A simple empirical approach was employed to

estimate the spatially explicit probability of public detection.
Historical data from 1998 to 2013 were used to calculate the
empirical proportion of fires that were first detected and

reported by the public within a given cell within a given time
horizon. An exception is for cells with at least one fire but fewer
than five fires, in which case the probability was simply reduced
by 50% to address the influence of a small sample size.

The success of initial attack of fires is believed to be affected
by many factors including the elapsed time from ignition to
reporting and subsequent fire suppression action (Paudel et al.

2019). Time horizons of 4, 8, 12 and 24 h were used for public
detection probability. This stratification was done because
the importance of the elapsed time depends on the potential fire

behaviour and potential impacts. When they are low, longer
elapsed times are acceptable, but when they are high, longer
elapsed times are not acceptable.

Calibration of the combination of factors through expert
elicitation

Detection experts possess a tacit knowledge of the system that is
subjective and difficult to describe. There has been a growing

focus on expert elicitation and many studies where expert
knowledge is preserved in decision aids (Hoffman et al. 1995)
including those used in other fire management applications

(e.g. Hirsch et al. 1998, 2004; Scott et al. 2013; McFayden et al.

2019). It was clear from the initial interviews that experts did not
weight all factors equally or linearly (e.g. the hazard represented
by fire behaviour conditionswasmore of a concern to experts than

the likelihood of fire occurrence in some situations). Nor would a
weighting of each factor fully capture the how they considered
these factors and their interaction (e.g. it was not simply amatter of

fire occurrence being twice as important as RAs).
The DDI was therefore calibrated to reflect the decision-

making of OMNRF staff considered to be detection experts.

Noting that there are many methods of expert elicitation (e.g.
Hoffman et al. 1995; Hickey and Davis 2003; Hoffman and
Lintern 2006), we chose to use semistructured interviews with
an interactive tabular representation of the DDI scores given low

to high fire occurrence, fire intensity and weighted resource and
asset scenarios. In an ask-and-answer format, experts provided
feedback about whether or not their feeling of the ‘level of

concern’ was represented when the interviewer showed the
results of different non-linear combinations of the factors. The
numeric output was a coloured chart where higher scores were

coloured red and lower coloured green to aid in interpretation.
This ask-and-answer process of ‘do you like it now, or now?’
(similar to the process used by an optometrist to assess vision)

proceeded until the experts were satisfied with the results. There
was no set number of iterations, and the expert was free to
engage in discussions and respond to additional questions from
the interviewer. After completion of individual exercises,

each participant was provided with the responses of the other
members of the group and their rationales were discussed.

The final form of the DDI model was arrived at by group

consensus. For this, we used 7 days of historical data to calculate
and map the DDI along with the actual planned detection routes
and reported fires. The expert panel reviewed results, discussed

what they recalled of those situations and specified the
model settings that they felt adequately represented their risk
preferences.

The rationale for the final form of each factor in the DDI

model was as follows:

(1) Fire occurrence: contributions from the person- and
lightning-caused fire models have significantly different
magnitudes. It is rare that the person-caused model will
predict more than one expected fire per cell per day,

whereas the lightning-caused model may predict several
owing to the spatial and temporal clustering (surges) of
lightning fire arrivals. To resolve the difference in model

scale in both the person- and lightning-caused models, the
expected number of fires for each model was mapped to a
set of ordinal fire occurrence categories, each with indices

of 1–10 representing the relative likelihood of fire occur-
rence in each cell (1 being low, 5 being moderate and 10
being high). Those categories were combined across the
lightning- and person-caused models to produce the total

likelihood of fire occurrence categorical variable (Lf ) used
in DDI. The expert panel also strongly felt that the desire to
look at an area rises quickly as the likelihood of fire

occurrence increases from zero. However, this approaches
a plateau because the desire to look at an area can eventually
become a necessity. The Lf is weighted in DDI with a power

transformation (0.8) to represent this behaviour.
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(2) HFI: a polynomial transformation of HFI to sHFI was
developed through an elicitation process. This is a common
approach to HFI classifications (e.g. Alexander and Cole

1995). The expert panel felt that HFI has a compressed
scale. Once a fire reaches a sufficiently high intensity level,
the importance of looking no longer increases linearly but

plateaus. As is the case with fire occurrence, once the HFI is
high enough, it is already highly desirable if not a necessity
to look at the cell. The polynomial transformation for HFI to

represent this behaviour as determined through the elicita-
tion process is depicted in Fig. 5.

(3) Impacts from the types and amounts of resources and

assets: the experts wanted to look at an area when there are

any impacts on RAs, even very small. The desire to see a
medium v. a high density of weighted RAs was not much
different. The Wra is weighted in the DDI by a power

transformation (0.5) to represent this behaviour.

Calculating the DDI

The following is the function for the DDI:

DDI ¼ ðLf Þ0:8ðsHFIÞðWraÞ0:5

where Lf is the index of the likelihood of fire occurrence factor,
sHFI is the polynomial head fire intensity (peak burn) factor,

and Wra is the weighted resources and assets factor.
The DDI is constrained to range from 0 to 100 and cate-

gorised onto an ordinal scale, ranging from 1 to 10 for the

purpose of colour-codedmapping of this risk. Table 3 depicts an
example of the different components of DDI and a comparison
of a standard risk calculation that uses linear weighting and the
expert non-linear weighting that is used.

Calculating the ADDI

The ADDI is calculated as follows:

ADDI ¼ DDIð1� Ppd � RelPpdÞ

Note that the ADDI adjusts the DDI for both public detection
probability (Ppd) and the reliance on the public detection
(RelPpd). This produces a measure of the need for a cell to be

seen by aerial detection observers, so fires can be detected and
reported. Similarly to the DDI, the ADDI is constrained to range
from 0 to 100 and is categorised onto the same linear scale as the
DDI for mapping purposes.

The time delay category for which the Ppd is applied in the
ADDI calculation depends on the DDI (see Table 4). When the
DDI is higher, a more immediate public detection timeframe is

used. For example, a cell may have a higher probability that
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Fig. 5. The importance of head fire intensity (HFI) relative to the urgency

or desire to look at an area for detection purposes elicited from fire

management experts.

Table 3. Comparison of different detection demand index (DDI) factors and linear risk v. weighted risk calculations

The resources and assets (RAs) example of 800 is a weighted score typical of areas with only land-based natural resources, and 5000 is typical of areas with a

mix of land-based resources, some infrastructure and a small amount of community assets

RA weighted score Head fire intensity (kW m�1) Index of fire occurrence likelihood Linear risk (equal weights) DDI (weighted risk)

800 5000 (crown fire) 1 (none–low) 4 000 000 28

5000 800 (low surface) 1 (none–low) 4 000 000 14

800 5000 (crown fire) 5 (moderate) 20 000 000 100

5000 800 (low surface) 5 (moderate) 20 000 000 50

Table 4. Detection demand index (DDI) and corresponding time-frame detection probability model

The corresponding public detection probability time-frame is used to calculate ADDI based on the DDI value. For example, if the DDI is 1.4, the public

detection probability for ,12 h is applied

DDI Range #0.4 .0.4 to #1.5 .1.5 to #31.3 .31.3

Public detection probability

model time-frames

#24 h #12 h #8 h #4 h
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the public will report a fire within 24 h, but a low probability of
detection in 4 h. If the DDI is high, a shorter time window for
public detection probability is used to calculate ADDI.

The reliance on pubic detection probability (RelPpd) also
depends on the DDI (see Table 5). The higher the DDI, the less
willing a decision-maker is to rely only on an uncertain public

detection. This is both because of the variability in public
detection reporting (e.g. random encounter and voluntary
reporting) and the simplicity of the model we have used. These

model parameters mimic the decisions taken when detection
planners state they ‘rely on the public’. Table 6 gives an example
of the different components of DDI and ADDI for a range of
conditions identical to those used in Table 3.

Illustration and Validation

An example of the components of DDI and ADDI is illustrated
in Fig. 6. The top three maps show the likelihood of fire
occurrence, the HFI and the weighted RAs respectively. Each of

the three factors in the three top maps are important for deter-
mining detection demand but none of the factors alone or in any
two-way pairing are sufficient to determine the detection

demand.
The DDI and ADDI maps in Fig. 6 illustrate the effect of

reliance on the probability of public detection. Although the two
maps are similar, the ADDI map generally has slightly lower

indices. This is particularly noticeablewhere the reddish cells on
the DDI map appear in a lower category on the ADDI map.

To explore the ADDI as a measure of the demand for aerial

detection, we examine the relationship between the ADDI and
where the detection patrols flew in the past. Our hypothesis is
that our ADDI model is valid if past aerial detection flights,

planned by expert detection planners, were routed over cells
with large rather than small ADDI values.

We calculated the daily ADDI during a study period con-
sisting of 1 June through 15 August for each of the 2016 and

2017 fire seasons. We focus on this core summer period of the

fire season because it avoids the variability associated with fire
weather station start-up and shut-down rules. The timing of
spring snow melt and fall (autumn) shut down can vary from

year to year and spatially across the provincial network of fire
weather stations operated by the OMNRF. By limiting our
analysis to this period, we ensure consistent spatial interpolation

of weather variables and subsequent calculation of fire-weather
indices and the HFI.

Each detection aircraft has an automated flight following unit

that transmits ‘heartbeats’ that include data on location, altitude
and speed of the aircraft during each flight. Heartbeats occur
approximately every 2min and are transmitted via a satellite link
to a ground station server and redistributed to the OMNRF’s

web-based monitoring application for flight monitoring. We
used this heartbeat data to determine when grid cells are looked
at during a route flown by aerial detection (see Fig. 7).

Any grid cell with its centroid within 20 km of a heartbeat
location is said to have received a ‘look’ because this is the
standard scanning distance used in the Ontario. These data were

cleaned by removing all heartbeats with an altitude of zero and
where the speed was less than 60 knots (kn) (i.e. below the stall
speed of the aircraft). Furthermore, cells with a centroid within

20 km of the main base airports for contract detection aircraft
were removed because those cells receive many looks simply
due to the detection aircraft taking off and landing there
frequently. A final cleaning step was to remove all grid cells

above the northern boundary of aerial detection patrols (see
Fig. 1) because aerial detection patrols above that boundary are
coordinated through a different management process, namely

reconnaissance flights that are dispatched to investigate fires
reported by other means.

We examined the association between the detection aircraft

heartbeats and the ADDI values of the cells visited in proximity
to the detection aircraft. A logistic generalised linear model
(GLM; e.g. Wood 2017) was fitted to model the probability that
a detection patrol flies through or near a cell as a function of the

ADDI. A likelihood ratio test comparing thismodel with the null

Table 5. Detection demand index (DDI) and corresponding reliance on public detection probability

The corresponding reliance on public detection probability weight is applied. For example, if the public detection probability is 0.2 and the DDI is 2.0, then the

public detection probability is weighted and the public detection probability used in the ADDI calculation is 0.12

DDI Range #0.4 .0.4 to #1.5 .1.5 to #31.3 .31.3 to #60.8 .60.8

Reliance on public detection probability 1.0 0.8 0.6 0.3 0.1

Table 6. Illustrative values of detection demand index (DDI) and aerial detection demand index (ADDI) for a range of conditions of resources and

assets (RAs), head fire intensity (HFI) and likelihood

Reliance on public detection is a function of DDI. An RAweighted score of 800 is typical of areas with only land-based resources, and 5000 is typical of areas

with a mix of land-based resources, some infrastructure and a small amount of community assets

RA weighted

score

Head fire intensity

(kW m�1)

Index of fire occurrence

likelihood

DDI Public detection probability

(50%)

Reliance on public

detection

ADDI

800 5000 (crown fire) 1 (none–low) 28 0.5 0.3 23.8

5000 800 (low surface) 1 (none–low) 14 0.5 0.6 9.8

800 5000 (crown fire) 5 (moderate) 100 0.5 0.1 95

5000 800 (low surface) 5 (moderate) 50 0.5 0.3 42.5
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model showed a highly significant improvement in model fit
with the inclusion of an ADDI effect (P value ,0) and
hypothesis tests for the intercept and ADDI coefficient para-
meters were highly significant (Table 7).

The estimated logistic regression coefficient for the ADDI
was positive. Hence, the probability of a cell receiving at least
one ‘look’ significantly increases as a function of ADDI. The

estimated parameters are on the logit scale. The fitted model
mapped back to the probability scale is given by the following
equation.

Pðcell receives at least one lookÞ ¼ e�1:6707þ0:1162ADDI

1þ e�1:6707þ0:1162ADDI

which is visualised in Fig. 8.

Discussion

As with all models, there are limitations in ADDI. For example,
there are hundreds of RAs in the provincial data warehouse
(OMNRF 2019) that are not accounted for in our weighted RA

model (e.g. habitat areas, different types of structures). More

detailed approaches to impact quantification could improve the
model (e.g. Scott et al. 2013; Thompson et al. 2013; McFayden
et al. 2019). We also recognise that fire can have positive
impacts and offsite effects, neither of which our methodology

currently addresses. The current approach for public detection
probability uses simple time categories and historical data.
Refinements to public detection modelling are ongoing. The

ADDI does not indicate when or how often a cell needs to be
looked at each day. Answering these questions requires among
other things addressing the probability of fire detection by a

person in a detection aircraft and the value of early detection,
which are areas of active study.

More broadly, the ADDI model is patterned after expert

preference and therefore reflects the behaviour of staff, which
is the result of the culture, values, structure and operating norms
of the fire management agency (e.g. Thompson et al. 2018).
Experts can be subject to biases, e.g. representativeness bias or

adjustment and anchoring (Tversky and Kahneman 1975). Hand
et al. (2015) and Wilson et al. (2011) also found bias influenced
decision-making in fire management. There can also be pro-

blems with including expert judgment that may affect model

Likelihood of fire occurrence
No model

LOW IC1 (< 10 kW m–1) 1
2
3
4
5
6
7
8
9
10

IC2 (10–500 kW m–1)
IC3 (500–2000 kW m–1)
IC4 (2000–4000 kW m–1)
IC5+ (> 4000 kW m–1)

Public detection
time frame

and reliance
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Head fire intensity (intensity class map) Weighted resources and assets

Aerial detection demand indexDetection demand index

Fig. 6. Example of the untransformed component maps and the resulting detection demand index (DDI) and aerial detection demand index (ADDI).

The top threemaps show the likelihood of fire occurrence, the head fire intensity and the weighted RAs respectively. The lower twomaps show theDDI

and ADDI.
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performance (e.g. Hoffman et al. 1995). For example, in our

observations, we may have captured what the expert did, but not
always what they know. Bias can be introduced from the
elicitation methods used, e.g. leading questions, group effects.

There are manymethods for eliciting expert knowledge that may
help improve engagement such as the Delphi technique for
consensus among a group (e.g. Hasson et al. 2000) and the

Critical Decision Method, which is used in naturalist environ-
ments such as firemanagement (e.g. Hoffman andLintern 2006).

An alternative to emulating expert preference is using

analytical models (e.g. Martell 1982; Minas et al. 2012). These
models usually havemechanistic submodels that link alternative
actions to outcomes of interest, given influencing factors such as
burning conditions and RAs. Decision-makers specify their

objectives or preferences on the outcomes. Example objectives
may be to minimise discovery size, maximise initial attack
success probability or – more comprehensively – minimise a

surrogate measure of expected cost plus net loss (e.g. Simard
1976). The model identifies the action that leads to the best
outcome according to the decision-makers’ stated preferences.

Stated concisely, models that emulate experts directly con-
nect influencing factor conditions to what experts would like to
do under those conditions. In contrast, for each alternative
action, analytical models directly connect influencing factor

conditions to outcomes of interest and then evaluate the out-
comes according to elicited preferences, thereby identifying the
best alternative action.

An advantage of analytical models is that they do not just
reproduce experts’ behaviour, but may reveal alternative actions
that may have some advantages. Maguire and Albright (2005)

suggest that the use of analytical models may help overcome
expert bias. Thompson et al. (2018) advocate the use analytical
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number of looks
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Fig. 7. An example of the number of looks attributed to cells from aerial detection patrol heartbeats. Note the high number of looks in cells around

where the patrol routes converge (airport). These looks are not necessarily a function of a higher aerial detection demand index (ADDI), but rather the

fact that detection patrol aircraft take off and land from the airports at which they are based.

Table 7. Summary of the fit of a simple logistic generalised linear

model (GLM) fit using aerial detection demand index (ADDI) as the

predictor and whether or not a grid cell received was looked at by aerial

detection during routes taken during the periods of 1 Jun–15 Aug in the

2016 and 2017 fire seasons in Ontario

Parameter Estimate s.e. P value

Intercept �1.6707 0.0076 ,0

ADDI coefficient 0.1162 0.0023 ,0

1.0

0.8

0.6

0.4

P
(c

el
l r

ec
ei

ve
s 

at
 le

as
t o

ne
 lo

ok
)

0.2

0 20 40 60

ADDI

80 100

Fig. 8. The fitted logistic generalised linear model (GLM) for the proba-

bility a cell receives at least one look as a function of its ADDI.
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models as one of several means to increase the use of unplanned
ignitions to help meet land-management objectives, especially
the reduction of hazardous fuel and resulting future risks.

A sometimes presumed advantage of analytical models is
that they are objective compared with models that emulate
expert decision-making. We would argue that this can be true

only to a degree. At least some of the components (influencing
factors, outcomes of interest, objectives, and preferences) that
are included or excluded from analytical models of complex

systems implicitly reflect culture, values and practices. These
model components are necessarily elicited from experts at some
level, e.g. Clemen and Reilly (2014).

Disadvantages of analyticalmodels include the difficulties of

designing sufficiently accuratemechanistic submodels, eliciting
objectives and preferences, explicitly measuring certain out-
comes and trading off multiple conflicting preferences (e.g.

Clemen and Reilly 2014). Furthermore, such complex models
may be seen as being too abstract or overly simplistic relative to
the real-world practicalities and complexities of wildland fire

decision-making, thus limiting user acceptance.
The benefits of including experts in model design is that their

domain knowledge should filter out unimportant cues (Elliott

2005) and focus researcher attention on what is important. The
experience and knowledge of those involved can be retained
within the model and assist less-experienced staff in the future.
This can support maintaining institutional memory, especially

in a high-turn-over workforce such as with seasonal fire man-
agement staff. Inclusion of experts also greatly assists in model
acceptance when experts see their own influence at work.

The pros and cons of expertise v. analytical modelling for
decision-making is an ongoing debate, e.g. Kahneman and
Klein (2009), who give examples and counter-examples of

the performance of each approach in various settings.We believe
aerial detection decision-making meets the conditions where
Kahneman and Klein would agree that expertise-based
decision-making is suitable.

Nonetheless, we are actively working on analytical
approaches to support many areas of wildland fire decision-
making (e.g. McFayden et al. 2019). Although we are not

motivated to increase or decrease the amount of aerial detection,
we believe that analytical modelling is also a viable approach to
support detection decision-making. We are planning an analyti-

cal model for detection that represents uncertain fire occurrence,
detection and behaviour, and that accounts for impacts and cost.

Anecdotal feedback received by the authors from Detection

Leaders during operational use indicated that the ADDI per-
formed well under average conditions. However, there were
situations where their preference or weighting of the factors
would likely be different than those we elicited for the ADDI.

The DDI and ADDI are not meant to prescribe decisions or to be
the sole input for the decision-makers for planning detection
aircraft patrols. There are always other factors and considera-

tions that fire management personnel use when planning aerial
detection efforts in real-world conditions in real time. Expert
staff are always necessary in detection planning.

The ADDI is currently the only automated daily spatial fire
risk product for assisting in wildland fire detection in Canada.
To our knowledge, there are no other similar models or products
in use by other fire management agencies. The value of the

ADDI is its automated and spatial nature that consistently
synthesises the main factors considered when planning detec-
tion efforts. We believe the ADDI may be a valuable decision

support tool for fire management staff to consider when plan-
ning detection.
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