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Abstract. Daily, fine-scale spatially explicit wildland fire occurrence prediction (FOP) models can inform fire
management decisions. Many different data-driven modelling methods have been used for FOP. Several studies use
multiplemodellingmethods to develop a set of candidatemodels for the same region, which are then compared against one

another to choose a final model. We demonstrate that the methodologies often used for evaluating and comparing FOP
models may lead to selecting a model that is ineffective for operational use. With an emphasis on spatially and temporally
explicit FOPmodelling for daily fire management operations, we outline and discuss several guidelines for evaluating and

comparing data-driven FOP models, including choosing a testing dataset, choosing metrics for model evaluation, using
temporal and spatial visualisations to assess model performance, recognising the variability in performance metrics, and
collaborating with end users to ensure models meet their operational needs. A case study for human-caused FOP in a

provincial fire control zone in the Lac La Biche region of Alberta, Canada, using data from 1996 to 2016 demonstrates the
importance of following the suggested guidelines. Our findings indicate that many machine learning FOP models in the
historical literature are not well suited for fire management operations.
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Introduction

Although wildland fires are a natural part of many ecosystems
that have several positive impacts (Johnston et al. 2020), they

also pose a risk to public safety, infrastructure, property and
forest resources (Martell 2007). Fire management agencies are
faced with the difficult task of balancing the benefits and losses

of wildland fires in order to get ‘the right amount of fire to the
right place at the right time at the right cost’ (Martell 2007).
Consequently, fire management decisions are made on a variety
of spatial and temporal scales from daily, incident-level tactical

decisions all the way to long-term, large-scale strategic plan-
ning. These can include developing strategies to detect fires and
optimising resource allocation for responding to fires.

Wildland fire management can be viewed as a form of risk
management (e.g. Xi et al. 2019; Johnston et al. 2020). One of
the key components of wildland fire risk management is

accurately quantifying the likelihood or probability of wildland
fire occurrence (i.e. the hazard). A recent review of wildland fire
management in Canada by Tymstra et al. (2020) noted that

improvement of wildland fire occurrence prediction (FOP) was
a ‘specific gap’ in preparedness research.

This need to predict when, where and how many fires can
occur is a critical piece of information for fire management

operations. In Canada, the Canadian Forest Fire Danger Rating
System (CFFDRS) is used daily by fire management personnel.
Although the CFFDRS includes an FOP system as one of its four

linked subsystems, at the time of its release, that FOP System
was conceptual (Stocks et al. 1989) and a national FOP subsys-
tem is still yet to be published (Wang et al. 2017). Natural

Resources Canada (2020) notes that some regions do have
systems. For example, the lightning-caused FOP system of
Wotton and Martell (2005) combined with the human-caused
FOP system of Woolford et al. (2020) represent the fine-scale,

spatially explicit FOP system used by the Ministry of Natural
Resources and Forestry in the Province of Ontario, Canada.

FOP aids preparedness planning tasks such as the reposi-

tioning or deployment of detection and/or initial attack sup-
pression resources. Consequently, spatially and temporally
explicit FOP models have been developed and integrated into

fire management information systems (e.g. Woolford et al.

2016). FOP models also feed into other decision support tools,
such as those that aid aerial detection planning (e.g. McFayden

et al. 2020).
Ideally, an FOP model used in an information system or for

decision support should produce predictions on a space–time
scale that provides enough detail for use in daily fire
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management planning. As noted in reviews of global research
on wildland fire occurrence (Plucinski 2012; Costafreda-
Aumedes et al. 2017), there are two distinct approaches to

FOP. Fire occurrences can be modelled as a binary process
(i.e. fire or no fire) or as a count of the number of occurrences
(e.g. Cunningham and Martell 1973; Todd and Kourtz 1991;

Plucinski et al. 2014). In this study, we focus on the binary
approach, as have most past FOP studies. To develop a fine-
scale, spatially and temporally explicit FOPmodel, space–time

is typically partitioned into a set of voxels (e.g. 10 � 10-km
daily cells), which map counts of fires essentially to a presence
or absence (i.e. fire or no fire) process and facilitate the use of
the binary modelling approach. This procedure results in a

highly imbalanced classification problem for researchers to
model in the sense that the number of fire observations is many
orders of magnitude smaller than the number of non-fire

observations (Taylor et al. 2013).
Many different methods for FOP have been used historically

in this context of fine-scale, spatially and temporally explicit

FOP modelling, including logistic regression (e.g. Martell et al.
1987, 1989; Vega-Garcia et al. 1995), regularised (e.g. LASSO)
logistic regression (e.g. Nadeem et al. 2020), logistic general-

ised additive models (e.g. Brillinger et al. 2003; Preisler et al.
2004, 2011; Vilar et al. 2010; Woolford et al. 2011, 2016;
Magnussen and Taylor 2012) and a variety of machine learning
methods, including neural networks, support vector machines

and random forests (e.g. Vega-Garcia et al. 1996; Vasconcelos
et al. 2001; Alonso-Betanzos et al. 2003; Stojanova et al. 2006,
2012; Sakr et al. 2010, 2011; BarMassada et al. 2013;Rodrigues

and de la Riva 2014; Van Beusekom et al. 2018).
Owing to the wide range of modelling approaches, it is not

uncommon to usemultiplemethods to develop a set of candidate

FOP models for a given region and then choose a final model.
Given that such amodel could be used by firemanagement, such
as in an information system displaying spatially explicit FOP
predictions based on current conditions, it is crucial to be able to

objectively evaluate and compare models for final model selec-
tion. We have noticed that the procedures often used for
comparing FOP models could lead to choosing a model that

may not be the optimal choice for use in practice.
Our objective is to outline guidelines for comparing FOP

models with the intent of systematically choosing the best fine-

scale spatially explicit model for daily use as a decision support
tool for wildland fire management operations. We discuss
appropriate choices for a testing dataset and evaluation metrics,

as well as the importance of addressing the variability in these
metrics. Furthermore, because FOPmodels could be used in fire
management practice, we argue that it is crucial to collaborate
with end users to ensure models meet their needs and to use

temporal and spatial visualisations that assess models in the
context in which they will be used. Through a case study
analysis for a provincial fire control zone in the Lac La Biche

region in the Province of Alberta, Canada, over the period 1996–
2016, we show how to reduce the risk of issues, such as failing to
identify poor calibration, in a variety of FOP models. Although

we demonstrate our objective using models from several differ-
ent FOP modelling approaches in our case study, we note that
these guidelines should be followed even if only a single
approach is taken.

Model evaluation and comparison for wildland fire
occurrence prediction

A review

Here, we briefly review several FOP studies, focusing on studies
that have fitted more than one type of model (i.e. using both

statistical andmachine learningmethods) and the ways in which
they have evaluated and compared their models. For compre-
hensive recent reviews of wildland fire occurrence research,

see Plucinski (2012) and Costafreda-Aumedes et al. (2017).
Plucinski summarised a wide variety of models, stratified by
their objectives, such as spatial v. temporal models and count

v. occurrencemodellingmethods, summarising common factors
that have been found to affect fire occurrence. Costafreda-
Aumedes et al. presented a global perspective of the various

methods that have been used for modelling counts and indi-
vidual incidences of human-causedwildland fires on a variety of
spatial and temporal scales and they also noted a need for FOP
models to be linked to management.

Several studies focus on modelling only spatial patterns of
wildland fire occurrence, commonly referred to as wildland fire
ignition susceptibility. Examples include Vasconcelos et al.

(2001) and Bar Massada et al. (2013), who modelled ignitions
directly, as well as Rodrigues and de la Riva (2014), who
modelled areas of high and low wildland fire occurrence. These

are relevant because their modelling approaches could be used
for fine-scale spatially and temporally explicit FOP modelling,
which is the focus of our work herein. For brevity, we also refer
to these articles as FOP studies throughout this paper.

To our knowledge, the comparison of Vega-Garcia et al.

(1996) of a neural network and logistic regression for FOP in the

Whitecourt Forest of Alberta, Canada, is the first comparison of

statistical and machine learning methods for FOP. Their study

region was split into eight subregions and, for every day in each

of five fire seasons, the presence or absence of a human-caused

wildland fire in the subregion was recorded, resulting in over

8000 observations in the training dataset. Only 157 of these

observations were fire occurrences, so they sampled 157 non-

fire observations from the training dataset in order to balance the

data before model fitting. A separate 2 years of data (3294

observations, 58 of which were fire occurrences) were reserved

to evaluate and compare models. Other FOP studies (e.g.

Vasconcelos et al. 2001; Stojanova et al. 2006, 2012; Bar

Massada et al. 2013; Rodrigues and de la Riva 2014) have also

used machine learning approaches and compared their results

with logistic regression. For these cases, fire occurrences have

composed 22 to 50% of the observations in the dataset.
In such studies, a confusionmatrix and themetrics associated

with it were often used for model evaluation and comparison.

For a binary response process, a confusionmatrix is a 2� 2 table

of the actual (fire/no fire observed) andmodelled values (fire/no

fire predicted). This requires a model’s outputs to be in the form

of a classification, not a probability. Yet many models that are

viewed as classifiers were actually developed to model the

probability of an event (Harrell 2015). In this context, fitted

and predicted values are mapped to a classification according to

whether the probabilistic output is above a given threshold.

Metrics such as accuracy, precision, recall (sensitivity), speci-

ficity, omission error, commission error and kappa have all been
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used in FOP studies (e.g. Vega-Garcia et al. 1996; Vasconcelos
et al. 2001; Stojanova et al. 2006, 2012; Sakr et al. 2010, 2011)
and are derived from the values in a confusion matrix.

Another metric that has also been used for FOP model
evaluation (e.g. Vasconcelos et al. 2001; Bar Massada et al.

2013; Rodrigues and de la Riva 2014; Nadeem et al. 2020) is area

under the receiver operating characteristic curve (AUC-ROC)
(Hanley and McNeil 1982). This is a threshold-independent
metric that depends only on a model’s ability to rank observa-

tions (i.e. relative probability of fire occurrence matters, but the
values themselves are irrelevant). An AUC-ROC value of 0.5
corresponds to no discrimination between the classes; values
from 0.7 to 0.8 correspond to acceptable discrimination; values

from 0.8 to 0.9 correspond to excellent discrimination; and
values greater than 0.9 correspond to outstanding discrimination
(Hosmer et al. 2013). Some reported AUC-ROC scores in FOP

literature have fallen short of the 0.7 threshold for acceptable
discrimination, but others have eclipsed 0.90.

Although uncommon, a few FOP studies have also assessed

another form of model performance, calibration. A well-
calibrated FOP model produces predictions that represent the
true probability of a fire occurrence. Sakr et al. (2010, 2011)

used customised metrics to assess the error in predicting the
number of fires on a given day, whereas Nadeem et al. (2020)
used root-mean-squared error (RMSE) after aggregating the
predictions either spatially or temporally.

In addition to metrics, some FOP studies have used visuali-
sations in order to qualitatively assess their models. Several
studies illustrated their models’ predictions using spatial maps

of fire occurrence probability (e.g. Vasconcelos et al. 2001;
Stojanova et al. 2012; Bar Massada et al. 2013; Rodrigues and
de la Riva 2014). Vasconcelos et al. (2001) also used a calibra-

tion plot to compare the observed probability of fire occurrence
with their models’ predictions, whereas Nadeem et al. (2020)
plotted observed and predicted counts.

Pitfalls with current approaches

The purpose of evaluating models on a testing dataset is to gain
insight about how we can expect a model to perform in practice.

In order to do this in a meaningful way, the distribution of the
testing dataset must be the same as the distribution of the
observations the model will encounter in practice. As noted,

fine-scale FOP modelling can produce a dataset that is highly
imbalanced in terms of fire and non-fire observations. Although
it is reasonable to use subsampling techniques to create training

datasets, such as response-based sampling for logistic-based
FOP modelling (e.g. Vega-Garcia et al. 1995; Brillinger et al.
2003; Vilar et al. 2010; Woolford et al. 2011, 2016; Nadeem
et al. 2020), these techniques should not be applied to the testing

dataset, because subsampling is not used when models are
implemented as decision support tools. This requirement is
important because the distribution of the observations in the

testing dataset can affect the metrics used in model comparison.
For example, subsampling of the non-fire observations in a
testing set can lead to an overestimation of the precision. Also,

some metrics are computed by calculating an error for each
prediction–observation pair and summing (or averaging) these
errors. These metrics can be computed independently for fire
and non-fire observations (i.e. stratified scores); thus, the

aggregate score of such metrics can be thought of as a weighted
function of the stratified scores. If we artificially change the fire/
no-fire distribution in the testing dataset, we are reweighting

these stratified scores. This reweighting impacts the aggregate
score and can change the ranking of the candidate models,
possibly leading to selecting a model that performs worse in

practice than one (or more) of the other candidate models.
The metrics associated with a confusion matrix are common

evaluation tools in the machine learning community (e.g. Géron

2017), but they are not particularly well suited for evaluating
FOP models; they are more suitable for evaluating models that
make final decisions (i.e. models that make a decision rather
than support a decision) such as an email spam filter, which

makes final decisions without human input. Consequently, two
problems with the use of threshold-dependent metrics for the
evaluation of FOP models become clear:

(1) For a threshold t and sufficiently small tolerance e, the
difference between a probability of a fire occurrence of t – e
and tþ e is negligible in practice, but not in the value of the
metric.

(2) Probabilistic output from two competing FOP models can

be very different but could also be mapped to the same
classification output and a threshold-dependent metric
would not distinguish between these two predictions.

In addition, if a testing dataset is used that represents the true

distribution of fire occurrences in practice, some of the metrics
associated with a confusion matrix are a poor choice. Recalling
that wildland fires are very rare events when modelling on a fine

space–time scale, wildland fire data are very imbalanced in
terms of the distribution of their dichotomous (fire/no fire)
response variable. Some metrics are inappropriate for use in

problems with imbalanced data. For example, it is well docu-
mented that overall prediction accuracy is a poor measure for
assessing model performance in such cases (e.g. Chawla et al.
2004; Orriols-Puig and Bernadó-Mansilla 2009; Jeni et al.

2013). This is because accuracy fails to consider the trade-off
between false positives and false negatives. A model can obtain
a very good classification accuracy simply by predicting the

majority class every time, but then the false negative rate is
maximised. Threshold-independent metrics can also be unsuit-
able for such situations. Jeni et al. (2013) noted that it seems

AUC-ROC may not highlight poor model performance in
situations with highly imbalanced data. Potential issues with
the use of AUC-ROC for FOP model comparisons have been

identified previously (Bar Massada et al. 2013).
A model’s ability to rank observations in terms of their

relative likelihood of fire occurrence is not the only component
of model evaluation that should be considered; a model’s

calibration is also important. However, very few FOP studies
have used metrics to assess calibration and none have directly
assessed the calibration on the scale of the predictions, namely

on the prediction–observation pairs. Although the primary goal
of FOP may be simply to identify regions with higher relative
likelihood of fire occurrence, a secondary but still important

goal of FOP should be to produce well-calibrated (i.e. true)
probabilities. Well-calibrated fire occurrence predictions are
much easier for a fire management agency to interpret, whereas
miscalibrated probabilities and a scale from low to high danger
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(without a probabilistic interpretation or a connection to the
expected number of fires) are more difficult to interpret and thus
are less useful as a decision support tool. In addition, the output

of FOP models may be used as input in other decision support
tools such as the aerial detection planning tool described in
McFayden et al. (2020) or inwildland fire riskmodelling (seeXi

et al. 2019; Johnston et al. 2020 for summaries). The risk to a
resource or asset (e.g. a house, a power line) from a specific fire
is the product of that fire reaching the entity (through ignition at

some location and spread to the entity) and the impact of that fire
on the entity. Thus, the total risk attributed to an entity needs to
account for all possible fires. Like with the metrics discussed
earlier in this section, this total risk can be thought of as a

weighted summation of the impacts across all individual fires.
Consequently, miscalibrated probabilities of fire occurrence can
lead to the belief that one entity is at higher risk than another

when the opposite may be the case. Even if the observations are
correctly ranked from low to high probability of fire occurrence,
this error can still occur because the magnitudes of the proba-

bilities are important for risk computations. Consequently,
proper calibration of output is a critical aspect of FOP models
that must be evaluated.

When FOPmodels are used in firemanagement operations as
decision support tools, firemanagement agenciesmay only have
a few minutes to interpret a model’s outputs and decide how to
act (Alexander et al. 2015). Visualisations have been suggested

to facilitate efficient interpretation of model outputs for FOP
(e.g. Xi et al. 2019). For example, daily predictions are com-
monly presented spatially, and predicted values over the grid for

a region of interest on a given day are aggregated to produce an
estimate for the expected number of new fires to arrive that day.
Consequently, the comparison of FOP models using only

metrics is not satisfactory as they do not assess their perfor-
mance in the context for which they will be used in practice. Bar
Massada et al. (2013) noted that metrics may reveal only small
differences in performance, while visualisations can reveal

more substantial differences. Although some FOP studies have
used visualisations to assess and compare models (e.g. Vascon-
celos et al. 2001; Stojanova et al. 2012; BarMassada et al. 2013;

Rodrigues and de la Riva 2014; Nadeem et al. 2020), we note
that several studies have relied entirely on quantitative metrics.
Consequently, we advocate for the use of visualisations to

qualitatively evaluate a model’s performance and to compare
competing models.

Guidelines

We provide six guidelines to follow to effectively evaluate and
compare FOP models in order to select a model well suited for
fire management operations.

Guideline 1: Ensure that the testing dataset is
representative of what will be observed in practice

In order to evaluate a model’s performance for use in

practice, it is imperative to use a testing dataset that is indepen-
dent of the training dataset. This requirement is generally met in
FOP literature. This guideline follows from the well-known fact

that using data that the model used in training leads to optimistic
estimates of model performance (e.g. Géron 2017). When

splitting the data into training and testing sets, we recommend
reserving the most recent years for model testing because this
represents how themodel would perform if used operationally in

the recent past, which may be useful for engaging with fire
management end users. An alternative would be to randomly
sample years from the dataset. Regardless, we suggest a block

sampling approach of full years so that performance can be
assessed over full fire seasons.

The distribution of the testing dataset must also be represen-

tative of the distribution expected in practice (i.e. highly imbal-
anced in terms of the response variable of interest). This applies
even if a response-dependent sampling method or some other
subsampling method was used to reduce the size of the training

dataset.

Guideline 2: Use area under the precision-recall curve
(AUC-PR) to assess a model’s ability to rank observations

In cases with imbalanced data, it has been suggested that
AUC-PR be used to assess model performance instead of AUC-
ROC (e.g. Jeni et al. 2013; Saito and Rehmsmeier 2015). Like

AUC-ROC, AUC-PR is a threshold-independent metric that
evaluates a model’s ability to rank observations in terms of
their relative likelihood of fire occurrence. Unlike AUC-ROC,

this metric does not have a level of model performance
associated with different ranges of values as described previ-
ously. The baseline AUC-PR is the overall proportion of
positive observations in the data and a model whose AUC-

PR exceeds the AUC-PR of another model is interpreted as
having better predictive performance. This metric has been
shown to be more effective than AUC-ROC in differentiating

between models’ early retrieval performance (Saito and
Rehmsmeier 2015), which for FOP corresponds to the perfor-
mance of a model for the observations deemed most probable

to be a fire occurrence.

Guideline 3: Quantitatively assess the calibration of a
model using appropriate metrics

Nadeem et al. (2020) assessed the calibration of their models
by aggregating their predictions across space or over time. As
will be discussed in Guideline 5, these metrics may be used in

conjunction with spatial or temporal visualisations. Although
this evaluation is helpful, we suggest also computing error terms
directly from prediction–observation pairs. The former

approach does not provide a way of choosing between two
models if the spatial and temporal metrics are not in agreement,
but our proposed approach facilitates using only a single metric
to compare the calibration of models. We consider three well-

known scoring rules for evaluating calibration in this manner;
mean absolute error (MAE) (e.g. Willmott and Matsuura 2005),
Brier score (BS) (Brier 1950) and logarithmic score (LS) (e.g.

Bickel 2007) are defined as follows:

MAE ¼ 1

n

Xn
k¼1

yk � pkj j

BS ¼ 1

n

Xn
k¼1

pk � ykð Þ2
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LS ¼ 1

n

Xn
k¼1

yk log pkð Þ þ 1� ykð Þ log 1� pkð Þ½ �

where k indexes the observations, n is the number of observations,

pk is themodelled probability of occurrence, and yk is an indicator
variable indicating whether or not the event was observed. A
smaller value is better for MAE and BS, but for LS a larger (less

negative) value indicates improved performance.
An advantage of MAE is that it provides an intuitive interpre-

tation of how far off a model’s predictions are from actual

observations. However, unlike BS and LS, it is not a proper
scoring rule. Proper scoring rules have the property that their
values are optimised by the true probabilities (e.g. Benedetti

2010). The fact that MAE does not have this property can lead to
surprising, unwanted results when comparingmodels. Consider a
situation with 1000 independent observations, each with a prob-
ability of fire occurrence of 1 in 1000. Suppose that there are the

following two candidate models: a ‘correct’ (i.e. perfect) model
that predicts fire occurrence with probability 1 in 1000 for each
observation, and a ‘no fire’ model that always predicts zero

probability of a fire. Consider the situation that corresponds to
what is expected on average from the underlying process, namely
exactly 1 of the 1000 observations is a fire. The MAE for the

‘correct’ model is 0.001998, but the MAE for the ‘no fire’ model
is only 0.001, approximately half theMAEof the ‘correct’model.
In fact, the use ofMAEwould lead to choosing the ‘no fire’model
in any scenario where less than 500 fires occurred. Note that the

probability of seeing more than even 10 fires in this hypothetical
scenario is less than 1 in 100 million, meaning that the ‘no fire’
model would essentially always be chosen over the correct model

ifMAEwas the scoring criteria. However, such amodelwould be
of no use to fire management operations because it would never
predict a fire. Although this is an overly simplified example

because each observation has the same probability of fire occur-
rence, it illustrates thatMAEcan suggest the use of amodel that is
clearly inferior to another candidate model for use in practice. BS

would not yield results asmisleading asMAE, but it has also been
shown that BS is a poor choice of scoring rule for use with
imbalanced data (Benedetti 2010). For the situation as described
above with exactly one fire occurring, the improvement in BS

from using the ‘correct’ model instead of the ‘no fire’ model is
only 0.1%. Benedetti advocates for the use of LS, particularly in
cases with imbalanced data.

Of the three metrics considered, we suggest the use of LS for
evaluating FOP models. However, a potential downside of this
metric is that it places equal importance on identifying fire

observations and non-fire observations, even though a fire
management agency may wish to place more emphasis on
identifying the former. This can be done by using a customised

metric from the Beta family of scoring rules (Merkle and
Steyvers 2013), which is defined as follows:

L yjp̂
� �

¼ 1

n

Xn
k¼1

yk

Z1

pk

ta�1 1� tð Þbdt þ 1� ykð Þ
Zpk

0

ta 1� tð Þb�1
dt

8<
:

9=
;

where y ¼ y1; . . . ; ynð Þ is a vector of observed responses, p̂ ¼
p̂1; . . . ; p̂nð Þ is a vector of corresponding predictions, and the

parameters, a . �1, b . �1, control the shape of the scoring
rule. Specifically, the term a/(a þ b) can be set to reflect the
relative cost of false positives to false negatives. If positive

values are chosen such that b . a, the metric places larger
emphasis on identifying the minority class (fire observations)
than themajority class (non-fire observations). Note also that BS

and LS are special cases from this Beta family of scoring rules
with parameter values a¼b¼ 1 and a¼b¼ 0 respectively; see
Merkle and Steyvers (2013) for more details.

Guideline 4: Recognise that there is variability in
performance metrics

It is important to recognise that a model’s performance on a

testing dataset has an element of uncertainty associated with it.
Specifically, if different datasets were used for testing models,
we would (likely) obtain different values for each metric for

each model. Hence, each metric can also be viewed as a
realisation of a random variable drawn from a given sampling
distribution. If interested in a statistical comparison of models, a

paired t-test can be performed, using as inputs the individual
error terms for each prediction–observation pair. It should be
noted that these error terms do not exist for the ranking metrics

(AUC-ROC and AUC-PR) and that the non-parametric alterna-
tive to the t-test, theWilcoxon signed rank test (Wilcoxon 1992),
is not an appropriate statistical test for comparing FOP models.
The latter is more robust to outliers, but for FOP, the outliers are

the fire occurrences (the observations in which we have themost
interest), so the robustness to outliers is not a desirable property.
For the ranking metrics, visualisations of the receiver operating

characteristic and precision-recall curves can be used to assess if
a subset of observations dramatically impacts the metric.

Guideline 5: Use visualisations to qualitatively evaluate
models

As mentioned, FOP models should be evaluated not only
quantitatively but also qualitatively. We advocate for the use of
time series plots of observed and predicted counts of fires

aggregated daily over the study region (e.g. Woolford et al.

2011; Magnussen and Taylor 2012) and colour-coded maps of
predicted fire outcomes (e.g. Magnussen and Taylor 2012;

Stojanova et al. 2012; Nadeem et al. 2020), both of which can
be paired with calibration metrics for predictions aggregated
over space or time. These maps of predictions can be presented

for a variety of time periods (e.g. daily, weekly, monthly). For
sufficiently short time periods, observed fires can be overlaid as
points, but this is impractical for longer time periods because

there will be too many fires in some regions. In these cases, a
colour-coded map can be created for the observed fire occur-
rences as well, and the visualisations can be compared side by
side.

Guideline 6: Collaborate with end users to ensuremodels
meet their needs

As mentioned in the third guideline, end users may value

different aspects when it comes to evaluating model perfor-
mance. It is necessary to collaborate with end users in order to
understand their priorities and develop and select models that

meet their needs, whichmay extend beyondmodel performance.
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Fire management agencies tend to be reluctant to trust FOP
models (Xi et al. 2019); thus, interpretability should be consid-
ered in the model development and selection process. Although

complex models (e.g. random forests, neural networks) have
been developed for FOP, they have infrequently been used for
decision support in fire management operations, possibly owing

to their lack of interpretability (Costafreda-Aumedes et al.
2017). Even if a model is shown to have statistically signifi-
cantly better performance than another – keeping in mind that
statistical significance does not imply practical significance – if

the latter model is more easily interpreted, it may be more
effective for operational use because its outputs are more trusted
by fire management agencies.When developing, evaluating and

comparing FOP models, it is important to consider the needs of
the end users in determining the overall efficacy of each model.

Case study: fire occurrence prediction in Lac La Biche,
Alberta, Canada

Here, we illustrate the importance of our guidelines through a

case study analysis. We note that our objective here is not to
determine the ‘gold standard’ for FOP modelling in the study
region. Rather, our objective is to demonstrate the importance of

these guidelines when evaluating and comparing a variety of
data-driven modelling methods that are commonly used for

spatially and temporally explicit fine-scale FOP. All analyses
were performed in R (R Core Team 2017).

Study region

Our case study is for a 23 000 km2 region that approximates Fire
Control Zone 42 in Alberta, a western province of Canada

(Fig. 1). We refer to our study area as the Lac La Biche region
because wildland fires in this area are managed by an office of
AlbertaMinistry of Agriculture and Forest located in the town of

Lac La Biche (Sherry et al. 2019). This region is in the Boreal
Plains ecozone of Canada, which experiences moderately warm
summers and contains a mix of coniferous (black spruce, jack

pine and tamarack) and deciduous (white birch, trembling aspen
and balsam poplar) trees (Ecological Stratification Working
Group 1995).

We analysed data for the Lac La Biche study region for the
1996–2016 fire seasons (March through October). In order to
develop spatially and temporally explicit FOPmodels, our study
region and period were partitioned into a set of space–time

voxels. These voxels have a spatial resolution of 10� 10 km and
a temporal resolution of 1 day. The Wildfire Management
Branch of Alberta Agriculture and Forestry (AF) was consulted

in this choice and they provided the spatial grid. Fire Control
Zone 42 is an irregularly shaped region; some cells in our study

113°W

54
.5

°N
55

°N
55

.5
°N

56
°N

112°W 111°W 110°W
Longitude

La
tit

ud
e

Fig. 1. Map of Canadawith provincial and territorial boundaries highlighted (white lines) illustrating the location

of the Province of Alberta (dark grey) and the Lac La Biche study area consisting of Fire Control Zone 42 (black)

along with an inset map showing the study area’s spatial grid.
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region extend beyond the fire control zone, while other cells
along the zone’s border are classified as part of another fire
control zone and thus do not belong to our study region. The

study region falls along the eastern border of Alberta, so some
cells on the boundary have a lower spatial resolution, as is
common in FOP modelling over a grid.

Data from various sources provided by AF were compiled
into a single dataset for modelling, recorded at the voxel level.
Data sources included the following: historical AF fire records;

historical daily fire-weather records observed at a set of weather
stations across the province that were then interpolated to the
centroid of each voxel; the Infrastructure Interface (INF),
Wildland Industry Interface (WII) and Wildland–Urban Inter-

face (WUI) of Johnston and Flannigan (2018) and geographic
information system (GIS) layers that represent human-land use
patterns such as roads and railways, as well as ecological

characteristics such as CFFDRS fuel types (e.g. Stocks et al.
1989) and ecological classifications (Ecological Stratification
Working Group 1995).

Specific covariates available for use as predictors for FOP
modelling included both static and dynamic variables. Static
variables included ecological information, such as fuel type

inventories (e.g. percentage of cell covered in a CFFDRS fuel
type, water and non-fuel) as well as variables that record specific
information about land use such as the percentage of the cell that
is WII, WUI and INF, and lengths of roads, railways, etc.

Dynamic variables included weather (e.g. precipitation, relative
humidity, temperature) as well as Canadian Fire Weather Index
(FWI) System variables, which were computed using the cffdrs

package (Wang et al. 2017). For information about the CFFDRS
and its FWI System, including a description of FWI variables,
see Wotton (2009) and references therein.

Both lightning and human-caused fires occur in our study
region. Stratifying occurrences by cause (lightning v. human)
for FOPmodelling across Canada is common (e.g. Martell et al.
1987; Vega-Garcia et al. 1995, 1996; Magnussen and Taylor

2012; Woolford et al. 2016; Nadeem et al. 2020) because of
different drivers of fire occurrence between lightning and
human-caused fires, including the fact that lightning-caused

fires have the potential to smoulder in the duff layer for an
extended period of time before detection (e.g. Kourtz and Todd
1991;Wotton andMartell 2005). This is not the case for human-

caused fires, which commonly ignite in dry surface fine fuels in
areas where quick detection is likely (Woolford et al. 2020). For
the purpose of our illustrative case study, we focused on human-

caused fire occurrences. At the space–time scale of the voxels,
counts of human-caused fires were effectively reduced to a
dichotomous (i.e., 0/1) variable with 1 denoting that cell
experiencing a fire day (i.e. one or more human-caused fires

occurred, with occurrences ofmore than one fire in a voxel being
extremely rare) and 0 indicating that no human-caused fires
occurred in that local region on that given day.

Modelling

Data from 1996–2011 were chosen as a training dataset and data

from 2012–16 were reserved as a testing dataset to facilitate
evaluating and comparing the performance of the models on
unseen data. As previously noted, this block sampling retains
full fire seasons for model testing. Our training dataset had over

900 000 observations, but there were only 550 voxels in which a
fire occurred. As several past FOP studies have used balanced or
approximately balanced training datasets (e.g. Vega-Garcia

et al. 1995, 1996; Alonso-Betanzos et al. 2003; Stojanova
et al. 2006, 2012), we sampled 550 non-fire occurrences from
the training dataset in order to create a balanced training dataset

that was needed for some of the modelling methods. A separate
balanced dataset was also created from the testing data. Models
were evaluated and compared using this as well as the unsam-

pled (imbalanced) testing dataset in order to illustrate how the
choice of testing data can impact model assessments and
comparisons.

In order to facilitate showing the importance of the guide-

lines we suggest, we used four different types of models that
have all previously been used for FOP: logistic regression (e.g.
Martell et al. 1987, 1989; Vega-Garcia et al. 1995), bagged

classification trees (e.g. Stojanova et al. 2006, 2012), random
forests (e.g. Stojanova et al. 2006, 2012; Bar Massada et al.

2013; Rodrigues and de la Riva 2014; Van Beusekom et al.

2018) and neural networks (e.g. Vega-Garcia et al. 1996;
Vasconcelos et al. 2001; Alonso-Betanzos et al. 2003; Sakr
et al. 2011). For more information on the framework of any of

the models, see the cited studies. However, it should be noted
that themodelling approach can differ evenwithin the same type
of model. For example, Vega-Garcia et al. (1996) trained their
neural network using backpropagation, whereas Vasconcelos

et al. (2001) employed a genetic algorithm. We implemented
logistic regression using the mgcv package (Wood 2011), the
bagged classification trees and random forest using the random-

Forest package (Liaw andWiener 2002), and the neural network
using the keras package (Chollet and Allaire 2017).

As appropriate, we used the default settings for both the

bagged classification trees and random forest. The neural
network was a multilayer perceptron trained using binary cross
entropy loss with the Adam optimiser (Kingma and Ba 2014).
Early stopping (e.g. Prechelt 1998) was used to prevent the

model from overfitting. In order to facilitate early stopping, a
validation dataset was needed. One hundred observations were
taken from the training dataset to form a validation dataset,

leaving 1000 observations remaining in the neural network’s
training dataset. This random splitting was performed in a way
that ensured both datasets were balanced. A maximum of 300

epochs were used for training, but if the loss on the validation
dataset had not improved after the most recent 30 epochs, the
model-fitting process was stopped. The neural network had

three layers: an input layer that performed batch normalisation
(Ioffe and Szegedy 2015), a single hidden layer with 10 neurons
that used the rectified linear unit (ReLU) activation function
(Nair and Hinton 2010), and an output layer that used the

sigmoid activation function.
All four types of models were trained using the same set of

covariates. We included the components of the FWI System,

namely the Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC), Drought Code (DC), Initial Spread Index (ISI),
Build-up Index (BUI), FWI and Daily Severity Rating (DSR).

Temperature, relative humidity, wind speed and precipitation
were also used as measures of the weather. The proportion of
each cell classified as WII, WUI and INF was used to represent
where people are and their interactions with the forest. In
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addition, the proportion of the cell covered in water was
incorporated. To capture intra-annual trends as well as spatial
trends that are unaccounted for by other predictors, we included

covariates for day of year, latitude and longitude. Many of these
predictors were correlated with one another, but this was not a
concern because our focus was on prediction, not inference, and

good predictions can still be obtained even with strong multi-
collinearity (e.g. Paul 2006).

We also fitted a second logistic regressionmodel to the entire

(unsampled) training dataset using only FFMC as a predictor,
because FFMC has been well established as a key driver of
human-caused fire occurrence, starting with the work of
Cunningham and Martell (1973). This very simple model can

be treated as a baseline for the other models when evaluating the
performance of eachmodel on an unsampled testing dataset.We
refer to this model as the baseline logistic regression model and

the other logistic regression model, which used several covari-
ates, as the multiple logistic regression model.

Model evaluation and comparison

As previously noted, we evaluated and compared the models
using both a balanced testing dataset and an unsampled

(imbalanced) testing dataset. Fig. 2 shows a temporal ‘mirror’
plot and RMSE for each of the models for the 2013 fire season,
using a balanced testing dataset. Except for the baseline logistic
regression model, the models appear to do an excellent job

identifying fire occurrences. However, our interpretation of
their performance changes dramatically if the unsampled testing
dataset is used, which is what would occur if such models were

implemented in practice. Fig. 3 displays the temporal plots and
RMSEs for 2013 using the unsampled testing data. It is imme-
diately clear that the models fitted using balanced training data

provide grossly overestimated predictions of the number of fires
throughout the fire season. In Fig. 4, we show spatial prediction
maps for the models for 5 May 2013. The most notable obser-
vation from these visualisations is that the baseline logistic

regression model outputs nearly uniform predictions. (A dif-
ferent scale was used for that plot to illustrate that there are some
minor spatial differences in predictions.) Although not nearly as

noticeable, the multiple logistic regression model also appears
to offer less spatial discrimination than the machine learning
models.

In addition to the visualisations, we compared the perfor-
mance of the models using several metrics commonly used in
past FOP studies as well as other metrics as suggested herein.

Metrics associated with a confusion matrix, namely accuracy,
precision, recall, specificity and kappa, were computed using
the caret package (Kuhn 2008) using a threshold probability of
0.5. The package PRROC (Grau et al. 2015) was used to

compute both AUC-ROC and AUC-PR. It uses two different
ways to calculate AUC-PR, a linear interpolation approach
(Davis and Goadrich 2006) and an integration approach (Boyd

et al. 2013; Keilwagen et al. 2014). We have found that these
values are typically quite similar, so only the values from the
most recent approach are presented. In order to assess calibra-

tion, we computed BS, negative logarithmic score (NLS), and a
customised metric from the Beta family that placed more
importance on identifying fire occurrences by setting para-
meters to a ¼ 1 and b ¼ 99. We used NLS instead of LS so

that a smaller value indicates better performance regardless of
the calibration metric under consideration.

The top part of Table 1 shows the values obtained for each

metric using the balanced testing dataset. The three machine
learning models performed very similarly, in general outper-
forming the logistic regressionmodels. For themachine learning

models, the calibration metrics are not in agreement in ranking
themodels. The values for BS suggest that the random forest and
bagged classification trees outperformed the neural network.

However, the values obtained for NLS and the customised
metric suggest the opposite. Paired t-tests were performed to
compare the tree-based approaches with the neural network for
BS and the customised metric, but none of these tests provided

strong evidence of a difference (0.12 # P # 0.78 for all four
tests). These tests were not performed for NLS because both
tree-based methods incorrectly predicted events with certainty

(i.e. a probability of 0 or 1), causing infinite scores for NLS.
The values for each metric using the unsampled testing

dataset are shown in the bottom of Table 1. There are several

cases where a model appeared to have outperformed another
when using a balanced testing dataset, but the latter model
performed better on the unsampled testing dataset. For example,

in terms of BS, bagged classification trees were better calibrated
than random forests when using the balanced testing dataset
(although a paired t-test did not find statistically significant
evidence of this statement with PE 0.51), but the opposite was

truewhen using the unsampled testing dataset (P{ 0.001). This
demonstrates that the ranking ofmodels can change as a result of
distorting the distribution of the testing dataset. The baseline

logistic regression model easily achieved the highest accuracy
simply by classifying every observation as a non-fire occur-
rence. However, it is clear from both the AUC-ROC and

AUC-PR that this model was inferior to the others in terms of
ranking the observations, which is unsurprising given the
uniformity of its predictions. In terms of percentage change,
AUC-PR shows much more substantial changes in model

performance than AUC-ROC. For example, with imbalanced
testing data, the percentage changes from the worst model to the
best model (in terms of AUC-ROC and AUC-PR) are 24 and

795% for AUC-ROC and AUC-PR respectively.When compar-
ing the random forest with the neural network, the percentage
changes are 1.5 and 69% respectively. These relatively large

changes corroborate past studies that have suggested that
AUC-PR may be able to highlight differences in model perfor-
mance that are not shown by AUC-ROC in cases with imbal-

anced data (e.g. Jeni et al. 2013; Saito and Rehmsmeier 2015).

Discussion

We have outlined several pitfalls of model evaluation and

comparison in FOP literature and provided a set of guidelines to
aid in selecting a model that is well suited for operational use.
These include the following six recommendations: (1) ensure

the testing dataset always represents the distribution of the data
encountered in practice; (2) use AUC-PR to compare the mod-
els’ ability to rank observations; (3) quantitatively assess the

calibration of a model using appropriate metrics (such as the LS
and/or a customised metric from the Beta family); (4) address
variability in performance metrics; (5) use temporal and spatial
visualisations to qualitatively evaluate the models; (6) and
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collaborate with end users to ensure that models meet their
needs. Such guidelines for evaluating models should be fol-
lowed even if one is developing a single type of model and not

comparing across a set of different types of FOP modelling
methods. We emphasise that the focus of these guidelines is
model evaluation and comparison, not model fitting, and that
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Fig. 2. Temporal plots for the 2013 fire season comparing the predicted number of fire days (bottom) with the actual number of fire days (top) using a

balanced testing dataset. The root-mean-squared error (RMSE) was computed by aggregating the predicted and actual number of fires in the entire study

region for each day in the 2013 fire season.
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details on an appropriate model development process (e.g. if the
aim is to identify significant relationships, handling possible
multicollinearity) are outside the scope of this paper.

Through a case study, we have demonstrated that the use of
model selection processes that do not follow such guidelines
may select a model that is a poor choice for operational use.
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Fig. 3. Temporal plots for the 2013 fire season comparing the predicted number of fire days (bottom) with the actual number of fire days (top) using an

unsampled testing dataset. The root-mean-squared error (RMSE) was computed by aggregating the predicted and actual number of fires in the entire study

region for each day in the 2013 fire season.
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By following these guidelines, wewere able to clearly determine

that all fivemodels in our case studywere poor choices for use in
practice. The baseline logistic regression model offered very

little spatial discrimination and therefore would not be helpful in

determining how to allocate resources across the study region.
As expected owing to the assessment of fit using the mirror plots
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and RMSE values contained in Fig. 3, all three calibration

metrics (BS, NLS and the customised metric from the Beta
family of scoring rules) indicate that the four models fitted using
a balanced training dataset were all very poorly calibrated.

These four other models all predicted far too many fires,
indicating that they would provide misleading guidance for
long-term planning and distort computations of risk. Had we
used some of the evaluation and comparison approaches used in

FOP literature, we may not have identified the deficiencies in
our models. For example, both the accuracy and AUC-ROC
obtained by these models are competitive with values obtained

in past FOP studies (e.g. Vega-Garcia et al. 1995, 1996;
Vasconcelos et al. 2001; Alonso-Betanzos et al. 2003; Stoja-
nova et al. 2006, 2012; Bar Massada et al. 2013; Rodrigues and

de la Riva 2014; Van Beusekom et al. 2018; Nadeem et al.

2020). However, the use of an unsampled testing dataset, along
with visualisations and metrics that assess calibration, revealed

that the models were very poorly calibrated.
As noted in the meta-analysis of Costafreda-Aumedes et al.

(2017), it can be difficult to synthesise results across different
studies and model types. When comparing metrics across

different models (as was done in our study and has been done
in other past studies), it is important to recognise that they could
vary with the fitted model and the given testing dataset. Ideally,

the testing dataset should be large enough to ensure that the
calculated metrics are relatively stable. However, the limited
number of positive observations in an imbalanced dataset can

lead to a large amount of variability when calculating a metric.
For example, our testing dataset had 291 312 observations, but
only 193 fire occurrences. As shown in Appendix 1, by swap-
ping the ranking of only two predictions, the AUC-PR can

change by as much as 0.0039, which is a relatively large change

considering the small scores for all five models (Table 1). In
future work, we plan to develop a set of better-suited candidate
models from which to select a final human-caused FOP model

for this region. As mentioned in Guideline 4, when doing so, it
will be important to plot precision-recall curves in order to
determine if differences in AUC-PRswere caused by veryminor
differences in predictions. Claiming that one model is better

than another based on a small difference in AUC-PR may be
very misleading to end users.

In our evaluation of the models, we presented spatial predic-

tion maps for only a single day (Fig. 4). It should be noted that
this sample day was shown for illustrative purposes and that
examining only a single day is not a sufficient procedure for

evaluating and comparing FOP models. In general, a variety of
scenarios should be examined for a thorough comparison and
evaluation ofmodels when developing an FOP system for use by

fire management. These scenarios should be chosen in consul-
tation with fire management staff. For example, daily fire
activity over the course of several fire seasons in the testing
dataset could be classified as low, moderate and high and then a

random sample of days within each of these strata could be
examined. Alternatively, one could create a dynamic visualisa-
tion that showed the progression of maps over the course of

several fire seasons reserved for testing, which could be viewed
by fire management personnel and the researchers to qualita-
tively assess a model’s performance.

Conclusion

We have proposed a set of guidelines for evaluating and com-
paring FOPmodels. These guidelines cover the choice of testing

Table 1. Values of performance metrics for each of the models using the balanced and unsampled (imbalanced) testing dataset

The metrics are accuracy, precision, recall (sensitivity), specificity, kappa, area under the receiver operating characteristic curve (AUC-ROC), area under the

precision-recall curve (AUC-PR), Brier score (BS), negative logarithmic score (NLS), and a customised metric from the Beta family of scoring rules. The best

value for each metric is bold. N/A, not applicable

Metric Baseline logistic regression Logistic regression Bagged classification trees Random forest Neural network

Balanced Accuracy 0.5000 0.7461 0.8161 0.8135 0.8083

Precision N/A 0.7340 0.8280 0.8135 0.7847

Recall 0.0000 0.7720 0.7979 0.8135 0.8497

Specificity 1.0000 0.7202 0.8342 0.8135 0.7668

Kappa 0.0000 0.4922 0.6321 0.6269 0.6166

AUC-ROC 0.7306 0.8145 0.9018 0.8999 0.8794

AUC-PR 0.7239 0.7858 0.9028 0.8992 0.8610

BS 0.4991 0.1749 0.1265 0.1284 0.1385

NLS 3.5972 0.5292 N/A N/A 0.4438

Beta family (a¼ 1, b¼ 99) 0.004562 0.000050 0.000075 0.000071 0.000067

Imbalanced Accuracy 0.9993 0.7614 0.8326 0.8370 0.7829

Precision N/A 0.0002 0.0032 0.0033 0.0026

Recall 0.0000 0.7720 0.7979 0.8135 0.8497

Specificity 1.0000 0.7614 0.8326 0.8370 0.7828

Kappa 0.0000 0.0030 0.0050 0.0053 0.0038

AUC-ROC 0.7301 0.8391 0.8973 0.9026 0.8896

AUC-PR 0.0019 0.0045 0.0168 0.0173 0.0102

BS 0.0007 0.1649 0.1246 0.1211 0.1439

NLS 0.0054 0.5049 N/A N/A 0.4351

Beta Family (a¼ 1, b¼ 99) 0.000006 0.000099 0.000089 0.000095 0.000087
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data, the use of appropriate metrics and visualisations for model
evaluation, variability in performance metrics, and collabora-
tion with end users. Using these guidelines, we have shown that

all five models developed in our case study are not well suited
for decision support in fire management operations. All models
that were fitted using a balanced training dataset systematically

overpredicted the number of fire occurrences. Given that many
machine learning models in FOP literature have been trained
using a response-based sample of the data like the one used in

this study, our results suggest that several past machine learning
models designed for FOP could also be very poorly calibrated
and thus not suitable for operational use to predict the number of
fire occurrences. This may also be true for some logistic FOP

models, but several recent studies have accounted for this biased
sample by incorporating an offset term into the logistic model
(e.g. Brillinger et al. 2003; Vilar et al. 2010; Woolford et al.

2011, 2016; Nadeem et al. 2020), as was first done for FOP
modelling by Vega-Garcia et al. (1995). To our knowledge,
machine learning FOP models have never been trained in a

manner that reflects the biased training data, but techniques such
as Platt’s Scaling (Platt 1999) and an equation proposed by Dal
Pozzolo et al. (2015) can be used to account for this bias. Future

studies that use machine learning for FOP should consider these
or other approaches to improve model calibration.
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Appendix 1.

Consider two models yielding identical predictions for all but

two observations. These observations have the two highest
probabilities of a fire for both models. One of the observations is
a fire and the other is not. ForModel 1, the highest probability is

for the observation with the fire and for Model 2 the highest
probability is for the other observation. Below is a computation
of the approximate change in AUC-PR for the testing dataset,

which has 193 fires.

Recall ¼ true positive

true positive þ false negative

Precision ¼ true positive

true positive þ false negative

When the PR curves of the models diverge:

Recall ¼ 1

1þ 192
¼ 0:005181347

Precision ¼ 1

1þ 1
¼ 0:5

For Model 1:
When the decision threshold moves past the second largest

prediction, the recall for Model 1 stays the same, but precision

does not.

Precision ¼ 1

1þ 0
¼ 1

For Model 2:

When the thresholdmoves past the second largest prediction,
both recall and precision change.

Recall ¼ 0

0þ 1
¼ 0

Precision ¼ 0

0þ 1
¼ 0

Computing the change in AUC-PR:
For Model 2, assume that the line segment drawn from

(0.005181347, 0.5) to (0, 0) is straight (i.e. the area can be
computed as a triangle).

Change inAUC-PR ¼ 0:005181347ð Þ 1ð Þ
� 0:5ð Þ 0:005181347ð Þ 0:5ð Þ ¼ 0:00388548
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