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Abstract. A conceptual model based on the dynamic interaction between fire, the fuel bed and the surrounding flow to
explain the non-monotonic or intermittent behaviour of fires is proposed. According to the model, even in nominally

permanent and uniform boundary conditions, the fire-induced flow modifies the geometry of the flame and its rate of
spread. After an initial acceleration, there is a reduction in the rate of spread followed by one or more cycles of growth.
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angle and rate of spread, have high-frequency oscillations superimposed on the low-frequency fire growth cycle described
above.
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Introduction

Forest fire spread is a complex process that is not fully under-

stood in spite of the variety of approaches used over several
decades of research, from purely empirical to fully theoretical,
aiming to achieve a full capacity to model and predict fire

behaviour. Pastor et al. (2003) and Sullivan (2009) give a state of
the art on the field of fire behaviour research and provide a large
number of references that illustrate the complexity of the

problem and the difficulty of reaching a general and complete
solution. At present, we are able to predict fire behaviour only in
a very limited set of conditions (Thomas et al. 2017), missing
some of the cases that may be of greater practical importance,

like the very intense or rapidly changing fires that create major
concerns for fire managers and endanger people’s lives
(Bowman et al. 2017).

A fundamental step in the process of fire modelling is to
understand how fires modify their properties over the course of
time, owing to dynamic interaction between the fire and its

surroundings. In previous work (cf. Viegas 2004a, 2004b), we
observed that, in the general case, fire behaviour is a dynamic
process in the sense that even under permanent boundary

conditions, fire behaviour properties depend explicitly on time.
In Viegas (2002), it was shown that the transverse convection
along the fire line modifies the rate of spread (ROS) of the fire,
producing its rotation movement. In Viegas (2004c), it was

shown that the fire-induced convection produces acceleration of
the fire, causing what was designated an eruption, which is often

observed in canyons or steep slopes. This problem is also
addressed by Dold et al. (2006). In Raposo et al. (2018), the
merging of two linear fires with a small angle between them,

causing strong radiation and convection effects, and producing
the highest values of ROS observed both in the laboratory and in
the field, was analysed. This problem was also studied by

Thomas et al. (2017).
In the present paper, we address the problem of natural

oscillatory or intermittent behaviour of the fire and show that
these oscillations are due to dynamic interaction between the

fire, the fuel bed and the surrounding flow. This natural process
is non-permanent as it involves fluctuations of various frequen-
cies and amplitudes superimposed on an overall quasi-static

process, which is in itself controlled by these fluctuations. We
propose a conceptual model to describe the fluctuations of flame
and ROS properties and present the results of a set of laboratory-

scale experiments to support it.
Several authors have studied the spread of a point or line

ignition fire on a slope, namely Mendes-Lopes et al. (2003),

Dupuy et al. (2011), Silvani et al. (2018), but in spite of
recognising the variability of the fire spread, they assume that
it propagates in a steady state and provide essentially average
values of fire spread properties.
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Albini (1982) studied the variability of wind-aided fires,
stating that the ROS of fires in natural fuels is very sensitive to
wind speed, but in many cases the spread rate can also vary

substantially with time even though the fuel and meteorological
conditions remain essentially constant. Based on the spectral
density of wind fluctuations at frequencies below 0.1 Hz, Albini

predicted that the response of the fire would be oscillatory, with
a spectral response that depended on the type of fuel and also on
the average value of the wind velocity. According to this model,

there is a dominant amplitude of oscillation of the ROS for a
frequency between 0.01 and 0.02 Hz but apparently the average
value of the ROS is not changed. Although Albini’s study
grasped some of the features of dynamic fire behaviour, it did

not consider the natural fluctuations that occur even in the
absence of wind and the large amplitude variations of the
ROS that are considered in the present paper. Finney et al.

(2015, 2019) and Silvani et al. (2018) also addressed the
problem of fluctuations in fire properties due to turbulence in
fire-induced convection.

Conceptual model of fire evolution

The present conceptual model considers a head fire created by a
flaming fire front on a flat surface covered by a homogeneous

fuel bed. We assume that there is a uniform and permanent
ambient flow over the fuel bed surface characterised by a ref-
erence velocity Uo (cf. Viegas and Neto 1991; for a full list of
symbols and abbreviations see Table A1 in Appendix 1).

Alternatively, we may consider that the fire is spreading along a
slope or a canyon with constant inclination a in relation to a
horizontal datum.

We are aware that the fires are always 3D processes and the
fluctuations of the fire and flow properties described in this
paper along theOx-axis occur along theOy-axis aswell, creating

cells of convection as observed by Finney et al. (2015). In the
present paper, we are concerned with the phenomena along the
main direction of fire spread, which are relevant for practical

applications in the case of fires that are driven by slope or wind.
In Fig. 1, we present the conceptual evolution of the fire

spread properties, namely the flame length and angle with the
horizontal surface (b) as a function of time. When the fire starts

(Stage 1 in Fig. 1), the flame is almost vertical (b¼ 908) and the
natural convection flow is symmetrical on both sides of the fire.
The presence of a constant wind (or constant slope or topogra-

phy effect) will incline the flame, decreasing its angle, and
increase the ROS (Stage 2). The fire growth due to the presence
of the flame and the prevailing wind can be explained by the

feedback effect described in Viegas (2004c) for the process of
fire growth in a canyon.

The larger value of ROS will increase the flame depth and
therefore the amount of fuel that is burning simultaneously.

Because of this, the flame will be thicker and start to become
vertical, increasing the value ofb given the larger amount of fuel
burning and the increased buoyancy (Stage 5). In the process of

fire acceleration, the local flow on both sides of the flame will
increase as well. The increase of the ROS and flame length with
local flow velocity and decrease of its inclination angle with

either wind or slope is amply supported in the literature (cf.
Dupuy 1995) and is documented below.

The increased modulus of the flow velocity on the leeward of
the flame will contribute to its deceleration and after reaching a
value of b E 908 (Stage 7), the ROS will decrease, reaching a

local minimum, and then a new cycle of acceleration starts
(Stage 8) but with a larger and deeper flame front than at Stage 1.
This cycle can be repeated if the boundary conditions persist.

ROS evolution

In order to analyse the fire front evolution, following many
authors, namely Byram (1959), Byram and Nelson (1951),

Rothermel (1972, 1983), Albini (1981, 1982), Alexander and
Cruz (2012), Tolhurst (2009), Sharples (2009), Butler et al.

(2007), we use the concept of ROS of the head fire as it gives a
very important indication of the development and intensity of

the fire. Several fire-related properties such as the fireline
intensity, flame length, energy release rate, residence time, heat
impact on the soil, gas emissions and others can be derived from

knowledge of the local ROS (cf. Freeborn et al. 2008; Canfield
et al. 2014; Moinuddin et al. 2018). Accurate knowledge of the
head fire evolution linked to other information on terrain, fuel

cover and topography can also provide an overall assessment of
the fire spread and of the perimeter or the burned area evolution
over the course of time.

As a consequence of the process described above, according
to the present model, the ROS of the fire front will have the
temporal evolution shown in Fig. 2, with a sort of yoyo effect.
There will be an initial increase of the ROS until Stage 7, then a

decrease until Stage 8, followed by another cycle. At the start of
this second cycle, normally the fire will have a higher ROS than
at Stage 1, given the growth of the flame up to Stage 6. Over

time, the cycle can be repeated one ormore times as illustrated in
Fig. 2 and as was observed in fire experiments that are presented
below and in some real fires as well (cf. Anderson 1968; Wade

and Ward 1973). Superimposed on the general cycle of ROS
evolution is a process of higher frequency – short period of
time – and low-amplitude fluctuations derived from the dynamic
interactions between the fire and the surrounding turbulent flow.
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b

Fig. 1. Conceptual temporal evolution of a 2D flame front on a plane

surface with a constant wind flow characterised by the reference velocityUo.
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These fluctuations are not illustrated in Fig. 2 for the sake of
clarity, but are clearly shown below in the laboratory-scale
experiments.

The conceptual evolution of the inclination angle b of the

flame over the course of time is also plotted in Fig. 2 with the
same time scale but with an arbitrary vertical scale. At the start
of the fire, the value of b is close to 908 and then decreases to a
value of the order of 308, and increases while the ROS continues
to increase, reaching a local maximum close to 908, after which
another cycle starts.

As plotted in Fig. 2 the growth of the ROS R is gradual and
then followed by a sudden decrease, as confirmed by the
experiments, giving the characteristic oscillatory or intermittent

pattern to fire behaviour. This sudden decrease produced by the
overall fire dynamics induced by the fire explains why an
eruptive fire in a canyon does not reach infinite values of R as
predicted in the mathematical model of Viegas (2004c, 2006)

after a finite time, as the changes in the flame and flow properties
at this stage decrease the value of R to a significant degree.

The present model deals mainly with kinematic properties of

the fire and of the surrounding flow but it must be taken into
account that the modifications induced by the flow in the
geometry of the flame are associated with a change in the

combustion processes as well as in the balance of forces and
heat transfer processes of the flame system, resulting in a change
of the ROS over the course of time. This time dependency of the
fire properties induced by the fire itself prompts us to define this

process as dynamic as opposed to other approaches that consider
mainly average values of fire properties.

Reference flow velocities

In order to analyse the flow in the vicinity of the fire front, we
refer to the temporal evolution of the flow velocity component

U0 ¼ Ux – Uo parallel to the fuel bed at a point P positioned at a
certain distance above it, as a function of the time t0 ¼ tP – t,
elapsed since the passage of the flame at time tP (cf. figure

below). Assuming that the flow induced by the fire has opposite
directions on both sides of the flame, we consider the time tP
when the relative velocity U0 changes sign as the time of arrival

of the fire at P. As shown in our experiments, on the windward
side of the flame, the flow velocity increases, owing to the

indraft produced by the fire, reaching a maximum value U0
max.

Then, the flow velocity decreases, being equal to zero at the
trailing edge – the rear of the flame, becoming negative on the

leeward side of the flame and reaching a minimum value U0
min,

ahead of the leading edge or front of the flame. We use these
values of U0

max and U0
min as reference flow velocities respec-

tively for the windward and leeward flows, near the flame.
In the present study, validation of the conceptual curve

shown in Fig. 3 was made with the experimental results

performed in no-wind conditions (Uo ¼ 0), in which case the
value of U0 ¼ Ux.

If the process of fire spread is transient, knowing the evolu-
tion of the rate of spread R(t), it is possible to estimate the

distance xf(t) of the flame to point P from:

xf ¼
Z t

tP

R tP � tð Þ:dt ð1Þ

Negative and positive values of xf correspond respectively to

the windward or leeward side of the fire.

Validation

In order to validate the conceptual model, we present a series of

laboratory experiments of point ignition fires under controlled
permanent conditions. Given the difficulty of physically pro-
ducing a flow with uniform velocity over a large area, we chose

to perform tests under the effect of constant slope in no-wind
conditions. Using the analogy between slope and wind effect on
fire spread, we extend the considerations above for the devel-
opment of a fire under a constant wind to the case of a fire on a

constant slope.
We consider two cases, first the spread of a point ignition on a

slope, and then in a symmetrical canyon. As we shall see in the

canyon fire, when we increase the slope of the water line of the
canyon to 308 or 408, the ROS increases and then decreases as
described in the conceptual model. In order to validate the

present conceptual model, we shall mainly use the slope tests,
as this configuration is easier to analyse and provides a better
description of the flame properties during the initial phase of fire

acceleration.

Material and methods

Experimental simulation

Standard fuel bed

All experiments described in this paper were performed with
our ‘standard fuel bed’ composed of dead Pinus Pinaster

needles with a fuel load of 600 g m�2 (dry basis) that has
consistently been used by our research group through the years
in a wide series of experiments (cf. Viegas and Pita 2004; Xie

et al. 2014; Raposo 2016; Raposo et al. 2018; Rodrigues et al.
2019). The pine needleswere kept inside the laboratory at indoor
ambient conditions; therefore, their moisture content mf could

change from one test to another. We measured mf before each
test in order to prepare the total mass of particles required for the
test to compensate for themass of water in the fuel. The height of
the fuel bed was between 5 and 7 cm.
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Fig. 2. Conceptual temporal evolution of the flame angle b and ROS of a

head fire with constant wind or slope (arbitrary scales).
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Basic ROS

The ROS of a linear fire front under no-slope and no-wind

conditions, which we designate the basic ROS Ro, is an
intrinsic property of the fuel bed. For a given fuel bed, its
value will depend mainly on the moisture contentmf of the fuel
particles.

In order to minimise the effect of mf on R in tests performed
under different conditions, we use the non-dimensional ROS R0,
defined as:

R0 ¼ R

Ro

ð2Þ

Fire spread on a slope

Weperformed tests with a point ignition fire on a slope on the

CT3 combustion table of the Forest Fire Research Laboratory of
the University of Coimbra. A schematic view of the experimen-
tal layout is shown in Fig. 4a and a photo of the test rig taken

during test SP303 is shown in Fig. 4b. The dimensions of the

table are 6 � 8 m2 but only half was used in the present
experiments. The fuel bed was a rectangle of 5.5 � 2 m2

(in some tests, the dimensions were 5 � 2 m2) and ignition
was at the centre line 50 cm above the lower border of the fuel.

L

b
0

b

a

Fig. 4. Schematic view of the flame geometrywhere L is the flame lengths,

a is the slope angle,b is the flame angle andb0 is the angle between the flame

and the horizontal surface.
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Fig. 3. (a) Geometry of a point ignition fire on a slope. (b) View of the CT3 canyon table of the Forest Fire Laboratory of the

University of Coimbra.
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Five S-Pitot tubes placed 15 cm above the surface of the table
measured the Ux component of the flow.

One infrared camera recorded an oblique top view of the
spread of the fire and two video cameras recorded the flame
properties during the tests.

The slope angle a of the table was set to 208, 308 and 408 and
four repetitions were made for each configuration. The test
parameters are given in Table 1.

Fire spread in canyons

Fires in canyons can ‘blow up’ or exhibit eruptive behaviour,
with the ROS increasing continuously over the course of time

(cf. Viegas and Pita 2004; Viegas 2004c, 2006; Dold and
Zinoviev 2009; Viegas and Simeoni 2011; Xie et al. 2020). A
canyon is composed of two lateral faces that make an angle d
with a reference horizontal plane, and their intersection – the

water line – makes an angle a with the horizontal datum
(Fig. 5a).

Experiments reported in Viegas and Pita (2004) performed

on a 3� 3 m2 canyon-shaped table with pine needles as fuel bed
showed the tendency of a non-monotonic variation of the ROS.
The mathematical model proposed in Viegas (2004c) estimates

that the ROS of the head fire along the water line of the canyon
will reach very high values after a finite time.

In the present study, a set of experiments was performed in
this test rig using d ¼ 408 (measured when a ¼ 08) for different

values of the inclination angle a of the water line.We performed
three repetitions for each configuration and these test parameters

are given in Table 2.
More details on the experimental methodology can be found

in Viegas and Pita (2004).

Data analysis

Rate of spread

The tests were recorded using an infrared camera (FLIR

SC660) in the range of 300–15008C, with a rate of acquisition of
15Hz. The threshold of 3508Cwas used to avoid obstruction of the
view by the fire plume. The frames from the IR camera recordings

were extracted and analysed to obtain the fire contour at pre-
defined times. The time between frameswas adapted for each test.
The Cartesian coordinates of the frame were converted into true
physicalCartesian coordinates in the plane of the combustion table

in order to determine the evolution of the fire front to compute the
instantaneous values of ROS at each point of the fire line and the
isochrones of the fire following the methodology described in

Raposo et al. (2018) and Rodrigues et al. (2019).
In the analysis of the positions of the fire advance along the

Ox-axis of the table, the positionsPi (xi, ti), andPiþ1(xiþ1, tiþ1) at

predefined times were determined. For the slope tests, these
points coincided with the head of the fire. In some configura-
tions of the canyon fires, there was a bifurcation of the fire with
two heads, one on each slope, but analysis was always carried

Table 1. Parameters for slope tests

Ref. a (8) Test Test dimensions (m2) mf (%) Ro (cm s�1) R0
max Lmax (cm)

1 20 SP201 5� 2 12.5 0.31 2.88 86.23

2 SP202 5� 2 13.8 0.26 2.68 77.63

3 SP203 5.5� 2 17.9 0.21 3.92 98.32

4 SP204 5.5� 2 17.1 0.21 3.02 80.58

5 30 SP301 5� 2 12.5 0.31 5.85 109.25

6 SP302 5� 2 13.8 0.26 6.49 132.40

7 SP303 5.5� 2 17.0 0.21 8.21 74.76

8 SP304 5.5� 2 18.2 0.21 5.65 79.30

9 40 SP401 5� 2 12.5 0.31 11.34 96.39

10 SP402 5� 2 13.8 0.26 10.92 78.57

11 SP403 5.5� 2 16.4 0.21 8.95 101.90

12 SP404 5.5� 2 17.1 0.21 9.44 96.56

Table 2. Parameters for canyon tests

Ref. d (o) a (o) Test mf (%) Ro (cm s�1) R0
max

1 40 20 DEP202 10.98 0.29 8.33

2 DEP203 11.98 0.29 10.86

3 DEP204 10.50 0.29 8.99

4 30 DEP301 10.30 0.28 32.05

5 DEP302 8.51 0.28 36.48

6 DEP303 13.01 0.28 26.45

7 40 DEP401 7.60 0.30 39.56

8 DEP402 8.10 0.28 33.02

9 DEP403 9.00 0.28 39.02

706 Int. J. Wildland Fire D. X. F. C. Viegas et al.



out on the intersection line of the two faces of the canyon,

corresponding to the axis Ox (see Fig. 5). From these data, we
can determine the ‘instantaneous’ ROS Rj (xj, tj):

Rj ¼ xiþ1 � xi

tiþ1 � ti
ð3Þ

We calculate this value for time tj given by:

tj ¼ ti þ tiþ1

2
ð4Þ

As we intend to correlate the fire properties (flame angle and
length) withRj, they are determined for the corresponding time tj
for each data point.

Flame geometry

Two video cameras were placed laterally on the surface of
the combustion table to record the propagation of the head fire

during each test, as shown in Fig. 3. The two cameras were a
Sony AVCHD MPEG2 SD and Sony HD DCR-SR87 that
recorded 20 frames per second. Although each camera could
view the entire length of the fire spread, in order to minimise

parallax errors, we used Camera 1 to analyse the spread of the
fire in the first half of the table and Camera 2 for the remaining
part. Reference direction and scale marks were used to estimate

the flame angle and length. It is estimated that the errors of the
angle and length measurement are less than 18 and 2 cm
respectively in the entire field of vision of each camera.

The flame length L is defined by the length of a line joining
the tip of the continuous flame to the middle of the base of the
flame, as indicated in Fig. 4. The flame angle b is the angle

between the base of the fuel bed and the above-mentioned line,
as shown in Fig. 4.

To estimate L and b at a given time tj, we used three frames,
captured at an interval of 1 s, at tj – 1 s, tj and tj þ 1 s. The

properties of the flame are the average of these three values.
As the experiments used in this work are controlled by the

terrain slope a, in the analysis of the flame angle, following Cruz

and Alexander (2020), we considered the possibility of using

another flame angle bo, defined by (see Fig. 5):

bo ¼ bþ a ð5Þ

The angle bo between the flame and the horizontal surface
would be more meaningful for describing the role of gravity or
buoyancy in the development of the flame and of fire spread.We

nevertheless found that this is applicable mainly at the initial
stages of the fire development, as fire-induced convection soon
becomes the dominant mechanism controlling the flame geom-
etry and fire spread.

Flow velocity

Five S-Pitot tubes were installed along theOx axis 15 cm above

the surface of the table at the following distances from the lower
edge of the fuel bed: 1, 2, 3, 4 and 5 m. Each Pitot measured the
flow temperature Ti and velocityUi (i¼ 1 to 5) parallel to the fuel

bed at every second. From the temperature record at each Pitot
position, with a rate of acquisition of 1 Hz using K-type thermo-
couples (nickel chromium/nickel aluminium, metallic shielded,

with a diameter of 0.5mm, connected to anNI cDAQ-9174with an
NI 9213TC module that allows synchronous data-logging), it was
possible to determine the time of arrival tp of the flame at eachPitot
position assessed by the temperature reaching 3508C. The Pitot

tubes were connected by pipes to differential pressure transducers
(Gems 5266–50L Very Low Range Differential Pressure Trans-
mitter (0 to 50 Pa)). These transducers were connected to the NI

cDAQ-9174 with an NI 9205 voltage module that performs the
data-logging of the signal also with a frequency of 1 Hz. The
transducers are bi-directional so that when the flow is upslope

along theOx axis, the signal is positive andwhen it is opposite, it is
negative. With the data collected by this method, using the values
of synchronous temperature measurements by the application of a
calibration, it was possible to estimate the flowvelocity induced by

the fire phenomena.
More details on the use and calibration of S-Pitot tubes can be

found in Kang et al. (2015). Pinto et al. (2020) found that the

error due to misalignment between the flow velocity and the
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Fig. 5. (a) Geometry of a symmetrical canyon. (b) View of the CT2 canyon table of the Forest Fire Laboratory of the University of

Coimbra.
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probe axis is negligible for an angle below 68; if the misalign-
ment is in the range between 6 and 308, the error can be up to 9%.

Results and discussion

Fire spread on slopes

Time evolution of ROS and flame angle

In order to illustrate the processes described in the conceptual
model, we picked sample slope tests of each configuration to
analyse the evolution of R0 and b as a function of time. The

results are shown in Figs 6–8, which include video images of
each test at selected times. In spite of the accuracy and detail of
the experiments, we recognise that there are some high-

frequency oscillations of both parameters that are not easy to
interpret or explain owing to the discrete nature of our data,
meaning that we may not observe the extreme values of R0 or b
as they may not occur exactly at the times of observation.

In test SP202 (Fig. 6) for a¼ 208, the ROS increases and the
flame angle decreases corresponding to points 1, 2 and 3 in
Fig. 2. There is a period of acceleration between 25 and 275 s

with an oscillation of both R0 and b. In this period, R0 varies
between 1.28 and 2.64 andb oscillates around 658. Between 275
and 325 s, b decreases to 518, while R0 drops from 2.68 to 2.32.

From this time till the end of the test, b increases again while R0

undergoes a full cycle of growth and decrease. The three photos
on the right side of Fig. 6 are of video images taken at 325, 425

and 525 s corresponding to a period of increasing values of b,
while R0 increases up to 2.65 and then decreases to 1.93.

In test SP 302 (Fig. 7) for a ¼ 308, the ROS and the flame
angle variation correspond essentially to the same phase as in the

previous case. There is a period of overall increase of R0 till it
reaches a value of 6.49 at 230 s. During this period, two
oscillations of R0 and b are observed. Between 230 and 330 s,

there is a period of R0 decrease from 6.49 to 2.04, also with two
oscillations. Then, two peak values of R0 occur at 350 and at
410 s with oscillations in between. From this time till 450 s, R0

decreases to 4.12 with an overall increase of b with at least two

oscillations. The three photos shown in Fig. 7 correspond to
video images taken at 170, 210 and 270 s illustrating the
decrease of b and the increase of R0 between 170 and 210 s

and the opposite trend in the second period of time.
Test SP 403 (Fig. 8) for a¼ 408 is possibly more straightfor-

ward to interpret as the value of R0 increases from 1.2 at the

beginning to 8.74 at 230 s. The ROS and the flame angle
increase, corresponding to points 4, 5 and 6 in Fig. 2. In this
period, there are several oscillations of bothR0 andb. During the
whole test, b increases with oscillations, some of them in phase
with the oscillations ofR0. Between 230 and 390 s,R0 andb have
two oscillations. The photos from this test, taken at 130, 250 and
330 s, illustrate a period of general increase of b and R0 with two
marked oscillations.

Rate of spread

The results of the non-dimensional ROS R0 as a function

time elapsed since the origin of the four tests performed for
each configuration for slope angles a ¼ 208, 308 and 408 are
shown in Fig. 9a–c respectively. In spite of the random nature

of the fluctuations of R0, good repeatability is observed for
tests performed in each configuration. For a ¼ 208 (Fig. 9a),
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Fig. 6. Evolution ofR0 andb as a function of time for test SP 202; a¼ 208. The photos above the figure show the flame at the time steps indicated near

each frame. The vertical dotted lines in the graph correspond to each photo. The same applies to Figs 7 and 8.
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we see that on average R0 increases from an initial value close

to 1.5 to ,2.5 and then decreases slightly. For a ¼ 308
(Fig. 9b), we see that on average R0 increases to values close
to 5 and then decreases with two or more cycles. For a ¼ 408
(Fig. 9c), we see that on average R0 increases to values close
to 8, and although there is indication of a decreasing phase
of R0, the length of the fuel bed was not sufficient to observe it
in full.

We do not have yet an interpretation for the relationship
between the relatively high-frequency and low-amplitude fluc-

tuations and the low-frequency and-high amplitude oscillations.
It seems that high-amplitude oscillations occur mainly for
values of R0 . 4, meaning that possibly, for this fuel, the amount

of energy involved in the combustion process is sufficient to

feed greater variations of the R0(t) curve.

Flame properties

The results of the flame angle b and flame length L as a

function of time since the origin for all tests performed for each
configuration for slope angles a¼ 208, 308 and 408 are plotted in
Fig. 10a–c respectively. Good repeatability of the experiments
is shown in the four tests performed for each configuration for

both parameters. Following the pattern of variation of R0, for
a¼ 208 (Fig. 9a), the flame angle decreases from the initial value
of 708 (which corresponds toboE 908), to,508 at the end of the
test. For a¼ 308 (Fig. 10b), the initial values of b are,608 then
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decrease to,408, remain constant and then tend to increase, at
least for some tests. For a ¼ 408 (Fig. 10c), the flame angle b
starts with values of the order of 508 (corresponding toboE 908)
and increases to 608 and even to 708.

Silvani et al. (2018) experimentally studied the spread of a
linear fire front in an excelsior fuel on a 3 � 6 m2 inclinable

bench for two slope angles of 08 and 308 and for three values of
fuel load. For the 308 slope, they refer to oscillations in the flame
geometry describing the latter as spherical (‘fireball’) or elon-

gated, which is consistent with the fluctuations that we observed
for both L and b, but they do not provide detailed data on the
evolution of fire properties with time.

Mendes-Lopes et al. (2003) experimentally studied the prop-

agation of a linear fire on a 2� 0.7 m2 fuel bed of Pinus pinaster
needles with a fuel load of 0.5 kgm�2 for various slope and wind
velocity conditions. Fuel moisture content was controlled during

the experiments and two values of the moisture content, 10% and
18%, were used. Slope was varied between �158 and wind
velocity between �3 m s�1. Although for practical reasons not

all combinations of slope and wind were tested, 192 tests were
performed for different combinations of the three control para-
meters. The authors provide results of the time variation of the

flame angle for two cases without slope. In the no-wind case, the
values of b oscillate around 908 with small fluctuations, but for
1 m s�1 wind, the flame angle varies between 408 and 908with an
average value of 708. For 3m s�1 flow, in the first 120 s the height

of the flame increases from 15 to 45 cm, with some oscillations; it
then decreases to values close to 20 cm after 20 s, but the authors
only provide average values of all parameters.

Reference flow velocities

The flow velocity was measured by S-type Pitot tubes, as

described in theMethods section, at five points 15 cm above the
ground, in all tests. Using average values of the flow velocity
every 5 s, the time tP of passage of the flame past each Pitot tube
position was estimated from the trace of U0(t) when the flow

velocity changed from essentially positive to essentially nega-
tive values of U0. The results obtained for each configuration
were very consistent and the results of one sample test for each

configuration are shown in Fig. 11.
To simplify our analysis, we consider the flame to be static at

the position of the Pitot (x¼ xP). When the flow approaches the

leeward side of the flame (negative values of xP – x and of tP – t),
the value of U0 increases to a maximum as anticipated in the
conceptual model, then decreases owing to the presence of the

flame,which acts as a solid body, producing a stagnation point in
the present test conditions. On the leeward side of the flame, the
flow velocity U0 becomes negative with a well-defined mini-
mum value. Very similar results can be found in Yang et al.

(2018) and in Liu et al. (2015).
The values ofUmax andUmin obtained in each test as a function

of the local value of R0 are plotted respectively in Figs 12 and 13.
As can be seen in Fig. 12,Umax tends to increasewithR

0, aswould
be expected, although the present data indicate that this growth is
not monotonic. For the present fuel bed, a local maximum value

of Umax for R
0 E 4 seems to exist.

The distribution of Umin also shows a tendency to decrease
with R0, as shown in Fig. 14, but possibly not in a monotonic
form as well.

Silvani et al. (2018) employed an innovative particle image
velocimetry (PIV) technique to analyse the flow field in a
vertical plane. Their flow visualisation and measurement tech-

niques confirm the existence of a positive fire-induced wind on
the windward side of the flame and a negative flow towards the
flame on its leeward side.

Overall flame angle and flame length

The distribution of values of flame angle b for all tests as a
function of R0 is shown in Fig. 14. In the initial stages of fire

spread, when R0 , 2, bo could possibly describe the evolution of
the flame angle better, as suggested before, but the fire-induced
flow velocity increases rapidly with R0 and the fire becomes
dominated by convective flow and less dependent on terrain

slope, as shown in Fig. 14.
In spite of the data scatter, it is possible to see the trend

of reduction of b from 908 for R0 ¼ 0 to a minimum value

between 308 and 408 for R0 E 4. For R0 . 5, b increases to
values close to 708.

This trend is also visible in the line of bave(R
0) shown in

Fig. 14. The lines corresponding to bave � Db, in which Db is
the standard deviation computed at each interval of R0, are
shown as well.

It must be noted that in this figure, we have values of b
corresponding to periods of fire acceleration (increase of R0) or
deceleration, which may contribute to the scatter of data.

The distribution of values of flame length L for all tests as a

function of R0 is shown in Fig. 15. The data scatter is larger than
for b but from the experimental points and the Lave line, it is
possible to see a trend of increasing L for 1.5, R0 , 3. There is

possibly a local maximum value of L for R0 E 4, corresponding
to the minimum of b. For R0 . 5, there seems to be a second
stage of increase of L, but the present data are too scarce in this

range of tests to confirm this assertion.
Our results show that for a given fuel bed, there is univocal

relationship between the ROS and the flame angle and flame

length, but this relationship is not bi-univocal as many fire
spread models assume. For a given fire spread condition –
terrain slope in the present case – some values of b or L may
correspond to different values of R0. As shown in the present

analysis, this is due to the oscillatory behaviour of fire spread,
caused by the interaction between fire-induced convection and
the combustion process.

Fire spread in canyons

We now present the results of the head fire ROS in the canyon
along itsOx axis, which cover a higher range of values of R0 and
therefore better illustrate the non-monotonic behaviour of fire

spread that is predicted in our conceptual model. Owing to
practical difficulties, flow and flame properties were not ana-
lysed in this test configuration.

In Fig. 16a–c, the non-dimensional ROSR0 values of the head
fire along the centre line of the canyon every 5 s are plotted as a
function of time, for the three tests performed with a¼ 208, 308
and 408, together with the curves of R0

ave and of R0
ave � DR0.

Given the relatively high temporal resolution of the fire spread
analysis, the existence of fluctuations in the ROS values with
time is clearly shown.
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The fluctuations of the ROS can be considered as an
instability or a perturbation of the equilibrium conditions in
the fire (cf. Finney et al. 2015). In some cases, the amplitude of

this oscillation is sufficient to cause a relatively large increase of
the ROS, leading to an ‘eruption’, but in other cases these
oscillations are damped by the fire–environment system and
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the ROS value returns almost to its initial value, as predicted in
the conceptual model. This is clearly shown in Fig. 16a for the
test with a ¼ 208 in which the average value of R0 increases
steadily from,1.5 at the start to 4 at the end of the test. Given
the random nature of the turbulent flow fluctuations, each test
is different from the other and the scatter of the ROS values is

not necessarily associated with lack of accuracy or other
systematic measurement errors but rather with the random
nature of the fire fluctuations. Therefore, the averaging process

provides only an indication of the overall tendency of the
evolution of R0(t).

In the case of a¼ 308 (Fig. 16b), the fluctuations continue to
exist, but when the value of R0 . 7, the amplitude of the

fluctuations becomes very large and sudden fire acceleration
occurs. As predicted by the Viegas (2004a) model, the value of
R0 increases very rapidly, reaching ,35. After this maximum

value, there are one or more oscillations with an overall
tendency of ROS reduction. The same happens for a ¼ 408
(Fig. 16c) with R0 increasing to ,40, although in this case the

reduction phase is not completed owing to the limited size of the
fuel bed.

Conclusion

In this work, a conceptual model of fire spread based on the
interaction between fire-induced convection, the fuel and the

surrounding flow that modifies flame geometry and therefore
the fire spread characteristics is proposed to interpret and justify
the non-monotonic growth of a fire. According to this model,

there is a process of relatively high-frequency fluctuations,
associated with the turbulent flame and flow properties, super-
imposed onto a lower-frequency evolution, related to the fuel

bed and its combustion properties, namely the flame geometry,
owing to its interaction with the surrounding ambient environ-
ment, that induces an oscillatory or intermittent behaviour in fire
spread. This concept was validated in carefully controlled lab-

oratory experiments of point ignition fires on a simple slope or in
a canyon in the absence of external flow. It was observed that
over the course of time, the ROS of the head fire undergoes a

cycle of growth followed by a sudden decrease, particularly in
the case of canyon fires, with higher-frequency and smaller-
amplitude oscillations. Careful analysis of the flow through the

flame highlights the modifications induced by the presence of
the flame on the flow in the windward or leeward regions of the
flame, with two characteristic velocities. For a given fuel bed,

these velocities increase in modulus with the ROS but possibly
not in a monotonic way. The flame angle in relation to the fuel
bed has a characteristic non-monotonic variation with R0,
decreasing from a relatively high value – corresponding to an

initially vertical flame – to a minimum value of the order of 308,
for R0 E 4 for this fuel, and then increases to values close to 708.
The flame length increases with R0 but also shows a local

maximum near the minimum flame angle.
In future work, we intend to analyse the fluctuations ofR0 and

of other flow and fire-related parameters for a wider range of

values of R0 for the standard fuel used in these experiments and
for other fuels as well. A mathematical model to interpret the
present conceptual model and its application to the analysis of
real fires reported in the literature will be addressed as well.
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Appendix 1

Table A1. Symbols and abbreviations

P Generic point of coordinates (x, y, z)

Pi Position of the fire front at predefined time

x Coordinate along the fire spread (cm)

y Transverse horizontal coordinate (cm)

z Vertical coordinate (cm)

mf Moisture content of the fuel bed particles (dry basis)

Uo Reference ambient wind velocity (m s�1)

U Flow velocity vector (m s�1)

U0 Flow velocity in the vicinity of the fire front parallel to the fuel bed at a point P (m s�1)

Ux Flow velocity vector (m s�1)

Umax Reference flow velocity in the windward region of the flame (m s�1)

Umin Reference flow velocity in the leeward region of the flame (m s�1)

R Rate of spread (ROS) (cm s�1)

Ro Basic rate of spread (cm s�1)

R0 Non-dimensional ROS

b Angle of the flame with the Ox-axis

a Slope of the water line in the canyon fires; slope of the fuel bed in the slope fires

d Slope of the faces of the canyon

L Flame length (cm)

ti Time of measurement (s)

tj Average time between two consecutive measurements (s)

tP Time that flow induced by the fire has opposite directions on both sides of the flame (s)

t Chronological time (s)

t0 Time that flow induced by the fire has opposite directions on both sides of the flame elapsed the chronological time (s)

Ti Temperature of the flow measured with thermocouples (K)

xf Distance of the flame to point P (cm)
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