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Modelling the daily probability of lightning-caused ignition in 
the Iberian Peninsula 
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Luis TorresG, Jaime RibalayguaG and Cristina Vega-GarcíaC  

ABSTRACT 

Background. Lightning is the most common origin of natural fires, being strongly linked to 
specific synoptic conditions associated with atmospheric instability, such as dry thunderstorms; dry 
fuels are required for ignition to take place and for subsequent propagation. Aims. The aim was to 
predict the daily probability of ignition by exploiting a large dataset of lightning and fire data to 
anticipate ignition over the entire Iberian Peninsula. Methods. We trained and tested a machine 
learning model using lightning strikes (>17 million) in the period 2009–2015. For each lightning 
strike, we extracted information relating to fuel condition, structural features of vegetation, 
topography, and the specific characteristics of the strikes (polarity, intensity and flash density). 
Key results. Naturally triggered ignitions are typically initiated at higher elevations (above 1000 m 
above sea level) under conditions of low dead fuel moisture (<10–13%) and moderate live moisture 
content (Drought Code > 300). Negative-polarity lightning strikes (−10 kA) appear to trigger fires 
more frequently. Conclusions and implications. Our approach was able to provide ignition 
forecasts at multiple temporal and spatial scales, thus enhancing forest fire risk assessment systems.  

Keywords: fire danger, forecast, fuel moisture, Iberian Peninsula, ignition probability, lightning 
strike, machine learning, wildfires. 

Introduction 

Lightning is the most frequent source of natural fires worldwide, shaping fire regimes and 
ecosystems over millennia prior to the advent of human influence and use of fire 
(Bowman et al. 2009; Fernandes et al. 2022). In Europe, natural-caused fires represent 
a small percentage of the total number of fires, typically below 5–10% (San-Miguel-Ayanz 
et al. 2012). In contrast to anthropogenic fires, which occur in a spatial pattern close to 
the human footprint (e.g. road networks, agricultural lands or the wildland–urban 
interface), the spatial location of natural fires is often clustered in specific hotspots of 
intense lightning activity and fuel availability (Ganteaume et al. 2013; Nampak et al. 
2021). These locations experience above-average burned area attributed to lightning- 
caused fires, which are particularly abundant in certain regions of the Iberian Peninsula 
compared with other Mediterranean regions (Dijkstra et al. 2022). 

Lightning fires frequently start in regions distant from human habitation and trigger 
multiple simultaneous events, which adds an additional layer of difficulty to suppression 
(Rodrigues et al. 2019a) and increases their likelihood of growing into large fire events 
when fuel and relief conditions facilitate fire spread (Pineda and Rigo 2017). The stages 
conducive to wildfire from a lightning source – strike, ignition, survival and arrival – 
depend on a specific set of factors and conditions (Anderson 2002). In short, a flash with 
sufficient peak current and duration is needed to initiate the smouldering phase. Fuel 
moisture, availability and type modulate the chances of survival, along with fire-prone 
weather conditions (e.g. lack of or small rainfall episodes). Under such conditions, 
lightning-caused smouldering may begin to flame and initiate a wildfire event (Pineda 
and Rigo 2017). 
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Most climate predictions envisage a decrease in fuel mois-
ture content while fuel accumulation due to land abandon-
ment is creating the perfect conditions for larger and more 
extreme fires across the Western Mediterranean Basin 
(Moreira et al. 2020, p. 202). Although further research is 
needed, there is already evidence of an increase in the occur-
rence of natural fires related to the increased frequency of dry 
storms and heat waves (Coogan et al. 2020; Li et al. 2020), 
potentially increasing fire frequency, size and intensity 
(Turco et al. 2018; Dupuy et al. 2020; Barros et al. 2021). 
During the summer of 2022, unprecedented lightning-caused 
fire activity was observed in some Mediterranean-type 
regions like California or Spain while some studies warn 
about lightning-caused fires becoming larger (Dowdy and 
Mills 2012) and more frequent (Cattau et al. 2020) in 
Australia. Understanding the linkages and feedbacks between 
environmental and atmospheric conditions that ultimately 
relate to lightning-caused fires is relevant to better under-
stand fire regimes (Barros et al. 2021; Cochrane and Bowman 
2021) or develop fire risk assessments (Chuvieco et al. 2014). 

Lightning-caused ignitions have attracted considerable 
attention worldwide, which has translated into a wide 
array of studies devoted to understanding lightning patterns 
and causes, their link with fire ignition or their future evolu-
tion under climate warming (Price and Rind 1994a, p. 199,  
1994b). Without being exhaustive, we found examples in the 
USA (Cattau et al. 2020; Jiménez-Ruano et al. 2022), Canada 
(Wotton and Martell 2005; Wotton et al. 2010), China 
(Hu and Zhou 2014), Australia (Dowdy and Mills 2012) 
and Europe (Dijkstra et al. 2022). In the Iberian Peninsula, 
the region under study in the present work, lightning-caused 
fires have also been investigated historically (Vazquez and 
Moreno 1998; Castedo-Dorado et al. 2011; Nieto et al. 2012;  
Chuvieco et al. 2014; Couto et al. 2020). Numerous studies 
have focused on addressing the probability of fires caused by 
lightning, humans or both. Most studies dealing with natural 
fires are based on historical compilations of natural fires 
coupled with environmental and climatic variables (Nieto 
et al. 2012; Rodríguez-Pérez et al. 2020) and meteorological 
data to determine the atmospheric conditions conducive to 
lightning fires (Pérez-Invernón et al. 2021; Soler et al. 2021;  
Pineda et al. 2022) or the lightning features that foster 
fire events (Pineda et al. 2014, 2022; Couto et al. 2020;  
Soler et al. 2021). The interactions between atmospheric 
models and the rate of spread of wildfires have also been 
investigated by Couto et al. (2020). However, there is still a 
lack of homogeneity in the methods, variables and protocols 
to predict, and therefore anticipate, the occurrence of natural 
wildfires. Here, we advocate an approach that decouples the 
conditions that favour lightning strikes from the environ-
ments that favour ignition. 

The present work aimed to predict the probability of 
ignition of natural fires by translating lightning records 
into spatial-temporal patterns of lightning ignition potential 
on the Iberian Peninsula. For this purpose, we analysed a 

large lightning strike dataset (more than 17 million observa-
tions) to ascertain the conditions under which a lightning 
strike may trigger an ignition, i.e. the probability of ignition 
conditional on the occurrence of the lightning strike itself. 
The model was initially trained and validated using data 
covering all peninsular Spain plus the Balearic Islands, and 
we subsequently investigated its ability to anticipate ignitions 
in Portugal. Several variables related to fuel moisture con-
tent, vegetation structure and topography, as well as some 
factors related to polarity, intensity and density of impacts 
were used. The methodology is based on Random Forest 
modelling and other related techniques (bootstrapping, 
resampling and data stratification) to assess the accuracy of 
the probability obtained. Most of the existing approaches 
have focused on either the atmospheric conditions surround-
ing lighting and ignitions (Pérez-Invernón et al. 2021; Soler 
et al. 2021; Pineda et al. 2022) or on developing stationary 
likelihood maps (Nieto et al. 2012; Rodríguez-Pérez et al. 
2020). Instead, here we delve into the spatial and landscape 
circumstances enabling natural wildfires. In this way, daily 
and moderate-resolution lightning ignition prediction for the 
whole Iberian Peninsula can be provided. 

Materials and methods 

Dependent variable: lightning strikes and fire 
ignitions 

The core of our approach leverages a large and comprehen-
sive dataset of cloud-to-ground lightning strikes recorded in 
the period 2009–2015. The dataset was compiled by the 
Spanish Meteorological Agency (AEMET) and provided by 
Meteogrid SL. AEMET’s lightning detection system for the 
Spanish territory is composed of 14 detectors on the Spanish 
mainland, 1 in the Balearic Islands and 5 in the Canary 
Islands (the latter were not used in this work); Meteo- 
France provides data from 10 of its detectors and the 
Portuguese Meteorological Agency adds 4 extra sensors. All 
data from these 34 detectors are consolidated in the calcula-
tion and tracking system at the AEMET’s climate service. The 
system is capable of detecting lightning strikes with a loca-
tion accuracy of the order of 1 hm and a detection efficiency 
of 90% of total lightning strikes. The dataset used in this 
study consists of more than 17 million records in the period 
2009–2020, reporting flash intensity, polarity and density. 
Lightning strikes were paired with actual lightning ignition 
data compiled by national agencies. Information about fire 
ignitions (location, date, cause and size) was retrieved from 
the Spanish (Estadística General de Incendios Forestales, 
EGIF; MAAyMA 2015) and Portuguese (Dispositivo Especial 
de Combate a Incêndios Florestais, DECIF; Pereira et al. 2011) 
databases. The Spanish dataset was used to identify those 
lightning strikes that started a fire while the Portuguese 
records were retained to evaluate the applicability of the 
model to the specific conditions of Portugal. 
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The response variable was constructed using historical 
ignitions in Spain. Approximately 2500 fires were matched 
to a lightning strike occurring within a radius of 1000 m and 
no more than 3 days after the ignition date (maximum hold-
over period according to Pineda et al. 2014). For each fire 
event, we retrieved all lightning strikes within a 3-day 
window. Then, we ranked lightning strikes by proximity to 
the fire’s ignition point. The closest lightning was associated 
with that ignition and further considered as lightning that 
triggered a fire when building the response variable. Only 
those flashes within a 1000-m distance from an ignition 
source were considered owing to the uncertainty in flash 
detection. From this information, we built a binary response 
variable combining strikes that triggered a fire (1 or pres-
ence) or were not related to a fire (0 or absence). The 
response variable comprised both lightning strikes on days 
where a wildfire occurred (fire days henceforth) and a 
balanced set of strikes from days without observed 
lightning-caused fires (non-fire days). We implemented a 
stratified sampling procedure to prevent undesired effects 
from the largely unbalanced response (more 0 s than 1 s) 
and minimise spatial autocorrelation. 

Independent variables 

To predict the probability of ignition, we employed factors 
related to vegetation, topography and others directly linked 
to lightning features. Live fuel moisture content was char-
acterised using the Drought Code (DC; Van Wagner 1987) as 
proxy, calculated following the standard procedure 
described in Wagner and Pickett (1985). DC was retrieved 
from the Copernicus Emergency System, which produces 
daily gridded (at 25 km resolution) historical data for a 
variety of meteorological fire danger indices, including the 
Canadian Fire Weather Index, to which DC belongs. We 
calculated the daily dead fuel moisture content (dFMC) as 
described in Nolan et al. (2016), previously used success-
fully on the Iberian Peninsula (Boer et al. 2017; Resco de 
Dios et al. 2022). The method is based on the exponential 
decline in dFMC with increasing vapour pressure deficit 
(VPD) and, in turn, it calculates VPD from MODIS Land 
Surface Temperature (MOD11A1 Collection 6). The dFMC 
measures 1–10 h fine fuels moisture while DC relates to 
seasonal drought conditions potentially affecting the mois-
ture content of live vegetation (Viegas et al. 2001). The 
dFMC was calculated using surface temperature and relative 
humidity daily data from the ERA5-Land dataset at a 9 km 
spatial resolution (Muñoz Sabater 2019). Secondly, eleva-
tion and relief curvature (derived from elevation via topo-
graphic position index; Weiss 2001) were selected to depict 
the influence exerted by the terrain in the ignition of 
natural-cause fires. We retrieved elevation data from the 
NASADEM global digital elevation model at 30 m spatial 
resolution (NASA JPL 2020). The last landscape feature 
incorporated into the model was vegetation height, acting 

as a proxy for vegetation structure and cover. We used the 
global forest canopy height map using a novel dataset cali-
brated combining Global Ecosystem Dynamics Investigation 
(GEDI) footprints of canopy structure (Dubayah et al. 2020) 
and Landsat Operational Land Imager spectral imagery. All 
variables were regridded from their original resolution to 
1 × 1 km. Topographic variables and vegetation height 
were aggregated by their median value into the 1 × 1 km 
destination cell while dFMC and DC were resampled using 
bilinear interpolation downscaling from 9 × 9 to 
25 × 25 km. Our model also accounts for lightning-related 
features, such as strike intensity and polarity, and density of 
flashes, as provided by the lightning detection network. 

Model calibration with Random Forest 

The model was trained using Random Forest (Breiman 2001), 
a popular and effective algorithm for wildfire distribution 
modelling (Bar Massada et al. 2013; Rodrigues and de la 
Riva 2014; Vecín-Arias et al. 2016; Su et al. 2018). We trained 
a total of 100 models exploring different iterations of the 
response variable. In each realisation, we extracted a balanced 
sample of 1-presence (flashes igniting a fire; 1/3 of the final 
sample) and 0-absence (lightning strikes non-conducive to 
fire; 2/3 of the final sample distributed as 1/3 in fire days 
and another 1/3 in non-fire days). The process was stratified 
using a 100 × 100 km grid so that at each grid cell, we 
extracted a balanced sample of 1-presence and 0-absence to 
reduce the potential spatial autocorrelation (Wang et al. 
2016). It must be noted that we only analysed the April-to- 
October period, coinciding with the brunt of the fire season. 

Model calibration was conducted using the caret package 
(Kuhn 2008) in the R environment for statistical computing 
(R Core Team 2021). For each model realisation, we split 
data into a calibration (70% of data) and testing dataset 
(30% of data). During the calibration phase, we implemen-
ted a 5-fold repeated cross-validation (three repetitions), 
optimising model parameters: number of trees (ntree; from 
100 to 2000 trees with steps of 100) and number of vari-
ables to use at each split (mtry; consecutive values from 1 to 
6). The minimum node size (nodesize) parameter was kept 
constant at its default value for regression (5) because it had 
little influence on performance. Once the model was cali-
brated, we evaluated the importance and explanatory sense 
of each covariate using partial dependence plots (Greenwell 
2017), and the overall performance of each model via area 
under the receiver operating characteristic curve (AUC) 
(Bradley 1997), using the test sample in the latter and the 
out-of-bag sample in the first. Out of the set of 100 models, 
we selected the one attaining average prediction performance 
(AUC = 0.828; mtry = 2, ntree = 1000 and nodesize = 5) as 
the candidate model to forecast and map the daily evolu-
tion of lightning-related ignition probability. The model 
was subsequently evaluated calculating the AUC from the 
Portuguese fire data, which consisted in 105 lightning fires 
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(>1 ha) in the period 2009–2015. Like the procedure fol-
lowed in the calibration stage, we created multiple random 
samples of 0-absence to account for the non-occurrence of 
fires in Portugal. In this case, we created a balanced sample 
of 105 non-fire locations on fire days, placing as many 
absences as fires were reported. This procedure was 
repeated 100 times to check the potential effect of the 
random placement of 0-absence. Finally, to perform daily 
spatial predictions over the entire Iberian Peninsula, we 
used daily information about dFMC and DC. Vegetation 
height and topography were kept constant. We set constant 
values of intensity, polarity and density of strikes equal to 
their respective average value over the study area and 
period (i.e. −10 kA and five discharges, respectively). 

Results 

Lightning caused fires in the Iberian Peninsula 

Fig. 1 illustrates the comparison of fire size and seasonal 
distribution of lightning-caused fires in the region. 
Lightning-caused fires were significantly larger than human- 
caused fires either due to arson or negligence (Fig. 1a, b). 
Note that accidental and negligence fires were grouped 
together owing to differences in the cause classification sys-
tems between Portuguese and Spanish agencies. Both the 
average fire size (burned area divided by number of fire 
events) and the 95th percentile of the size distribution show 
the potential for larger burned area size that lightning fires 
have. The average fire size of lightning fires was at least two 
times larger than human-related ignitions, even three times in 
the case of Portugal (Table 1). The interannual comparison of 
fire size revealed the prominent role lightning fires played in 
the waves of fires during the years 1994 (Spain), 2003 and 
2017 (Portugal). Their intra-annual distribution is clearly 
concentrated in the summer months (June–September), 
though in Spain they peak in August and July, whereas in 
Portugal, they are more evenly distributed during these sum-
mer months. (Fig. 1c). In any case, they seldom occur outside 
that temporal window, being scarce in April and October, 
though the agencies still reported some fires in both countries 
in these 2 months (1% of total). 

The Random Forest models denoted a high predictive 
capability (calculated test samples) in Spain (mean AUC of 
0.82; Fig. 1a) and the feasibility of extrapolating them to 
similar regions, as exemplified in Portugal (AUC = 0.74;  
Fig. 1b). The sensitivity of the models’ performance and 
extrapolation potential to the sampling of the response vari-
able (in the case of Spain) and to the random location of the 
background sample (in Portugal) was low. AUC values ran-
ged between 0.80 and 0.85 in the first case and between 
0.70 and 0.78 in the latter. The AUCs showed frequency 
distributions close to Gaussian, peaking at the means of the 
reported AUCs. 

The major contributing factors (Fig. 2c, d), DC and dFMC, 
are related to fuel dryness and prolonged drought periods. 
DC and dFMC showed very clear profiles of association with 
predicted ignition probability. The former is related to 
increasing probability up to a DC value of 300 for which 
the predicted probability increases from 0.28 to 0.49, level-
ling off at 0.42 beyond the 600 mark. dFMC shows the 
reverse profile, decreasing rapidly from its maximum at 0.5 
probability at 6% moisture content, decreasing to 0.34 
towards 13%. After that threshold, the probability continues 
to show a general decline, stabilising at ~0.3 when fine dead 
fuels have more than 20% moisture content. Ignition proba-
bility was strongly linked to elevation and vegetation height, 
although to a lesser extent than for the former factors. The 
probability of ignition by lightning increased with elevation, 
from 27 at sea level to 0.4 at 1000 m elevation. Likewise, 
vegetation layers 10–15 m tall were more prone to ignition 
from lightning (0.45–0.48). Lastly, less important but still 
contributing was the density of sensor-detected bolts and 
their intensity and polarity. The probability of ignition 
increased almost linearly with respect to the density of 
detected flashes, with a probability greater than 0.4 when 
more than 10 flashes occurred. Polarity and intensity showed 
the most erratic profile. Negative flashes at −10 kA showed 
the highest probability. Most of the flashes that started a fire 
were observed around this range, as can be seen in the 
percentile lines on the x-axis in Fig. 2h. Relief curvature 
was not selected as a meaningful driver in any model. 

Fig. 3 exemplifies the predicted probability over the 
Iberian Peninsula on 2 days with contrasting meteorological 
conditions. In general, the spatial patterns reflect the condi-
tions described above, i.e. a higher probability in mountain 
ranges with a taller canopy layer. However, comparison 
between the pairs of predictions highlights the leading role 
played by meteorological conditions and fuel moisture. The 
late May 2013 prediction exemplifies the situation under 
mild off-season conditions, while the early June 2015 predic-
tion illustrates the effect of a heat wave episode that boosts 
the probability of ignition across the Peninsula. The temporal 
variability can be also seen in Fig. 4c–h, with increasingly 
hazardous conditions from May to October. Likewise, the 
predicted probability varies yearly (Fig. 4a, b), though an 
underlying spatial pattern emerges from the comparison of 
all temporal aggregations matching the spatial footprint of 
the stationary drivers, i.e. elevation and vegetation height. 

Discussion 

The Iberian Peninsula is the most fire-affected region in 
Europe (Camia et al. 2013). In this work, we produced a 
daily forecast of natural-caused wildfire ignition probability 
across the Iberian Peninsula, a region that despite being 
dominated by human-caused fires stands out as one of the 
main hotspots of lightning fires in the Western Mediterranean 
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Basin. The benefits from managing natural ignitions are well 
documented, for example, in guiding fire reintroduction in 
heavily fire-excluded forests resilient or adapted to fire 
(Barros et al. 2021; Rodrigues et al. 2022). 

An insight into former models of lightning-caused 
fires on the Iberian Peninsula 

Previous studies have set the basis for developing our method-
ological scheme to assess the probability of natural fire igni-
tion over multiple temporal and spatial scales. Most of these 
were developed using binary classification approaches such as 
logit regression, assembling ignition locations along with 
environmental and climate-related drivers to derive the likeli-
hood of ignition and identify the main driving forces (Castedo- 
Dorado et al. 2011; Nieto et al. 2012; Chuvieco et al. 2014).  
Castedo-Dorado et al. (2011) assessed the probability of igni-
tion in the Spanish province (NUTS3, see https://ec.europa. 
eu/eurostat/web/nuts/background) of León, one of the major 
hotspots of lightning-caused fires. They employed binary logis-
tic regression, analysing the stationary probability in the 
period 2002–2007, pointing to the confluence of thunder-
storms over coniferous forests in high-altitude ranges as key 
factors, and reaching an AUC of 0.79. Using a similar approach 
but applied to two contrasting regions (the Autonomous 
Regions – NUTS2 – of Madrid and Aragón), Nieto et al. 
(2012) reached similar conclusions though with different 
levels of performance, the highest standing at AUC = 0.70. 
The method by Nieto et al. (2012) was subsequently extended 
over the entire Spanish mainland in Chuvieco et al. (2014). 
Their model was calibrated using categorical data on climate 
types, the number of lightning strikes and the Duff Moisture 
Code from the Canadian Fire Weather Index, giving an accu-
racy of 64.2%. Our proposal builds on these studies by delving 
into the temporal dimension. 

About the suitability and performance of the 
proposed approach 

We adopted a novel approach based on lightning strikes 
(Moris et al. 2020), in contrast to fire-based approaches 
(Amatulli et al. 2007; Nieto et al. 2012). That is, instead 

of building the response variable from the presence or 
absence of lightning-caused fires, we analysed the type of 
lightning and the landscape features conducive to fire, thus 
separating the ignition potential from the atmospheric con-
ditions surrounding the occurrence of lightning and thun-
derstorms. In terms of risk assessment, we believe the 
strategy of breaking down ignition likelihood and the prob-
ability of lightning occurrence offers several advantages. 
Decoupling both phenomena allows us to better understand 
their relative importance while enabling embedding differ-
ent models for lightning or thunderstorm forecast, or even 
real observations of lightning flashes. That is particularly 
important for short-term predictions. In turn, long-term 
modelling would also benefit from such an approach. Our 
forecast of ignition probability requires few weather-related 
factors (the same as are necessary for the calculation of the 
Canadian Fire Weather Index: rainfall, relative humidity, 
temperature and wind speed; Van Wagner 1987); thus, 
their prediction under climate scenarios (either Shared 
Socioeconomic Pathways or the former Representative 
Concentration Pathways) is already feasible. Along the 
same lines, several models are available to forecast lightning 
strikes (Woodard et al. 2014), hence giving the possibility to 
combine them with the ignition component. Furthermore, 
we translated model outcomes into spatial explicitly and 
scalable predictions as recommended in the literature 
(Vecín-Arias et al. 2016). Our modelling approach holds a 
high predictive accuracy (~0.82 AUC; Fig. 2a), which is 
noteworthy given the rare nature of thunderstorm-driven 
fires (Fernandes et al. 2021). Moreover, we demonstrated 
its suitability to perform forecasts in nearby fire-prone 
regions, evidenced by the successful validation in Portugal 
(Fig. 2b). 

The driving factors of lightning-caused fires on 
the Iberian Peninsula 

The observed relationships between ignition drivers and 
predicted likelihood are in line with their expected beha-
viour based on former modelling endeavours in the region. 
That is, low fuel moisture fosters ignition and higher 
chances of ignition are observed in mountain ranges. The 

Table 1. Summary of fire activity by cause of ignition and country.        

Country Cause N Area (ha) Avg. size (ha) 95th P size (ha)   

Portugal (2001–2020) Arson  9713  832 295  85.7 225 

Lightning  329  103 665  315.1 1022 

Negligence  15 108  637 720  42.2 106 

Spain (1988–2015) Arson  94 123  2 099 354  27.4 69.8 

Lightning  3538  331 352  88.7 176 

Negligence  32 710  1 097 640  39.0 75 

Only fires larger than 1 ha and with a known source of ignition where considered. N, number of fires; Area, total burned area in hectares; Avg. size, average fire 
size (Area/N) in hectares; 95th P size, 95th percentile of fire size in hectares. Only fires larger than 1 ha were included.  
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models. The dashed green line with grey shading shows the LOESS smoothed response and the 95 percent 
confidence interval range from the 100 model iterations, respectively. Rug lines along the x-axis indicate the 
10-fold percentile position of the variable.    
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important role of moisture content of the live/dead fuels in 
causing the ignition and propagation of new fire events has 
previously been documented in many works (Resco de Dios 
et al. 2021, 2022; Rodrigues et al. 2021; Baranovskiy and 
Kirienko 2022). Dry thunderstorms with a low precipitation 
rate preceded the largest lightning-caused fires recorded in 
the Mediterranean Basin (Pérez-Invernón et al. 2021). 
Indeed, the lack of rainfall is key during the survival 
phase of a fire (Pineda and Rigo 2017; Soler et al. 2021) 
and searching for these conditions has been at the core of 
many studies focused on the atmospheric and synoptic con-
ditions surrounding lightning fires. But, according to our 
findings, it is the influence of fuel moisture and seasonal 
drought (DC) that seem more decisive, perhaps because they 
inherently involve reduced or complete lack of rainfall. It is 
nonetheless worth noting that the critical DC threshold was 
identified at a value of 300. According to the European 
Forest Fire Information System, this indicates low-to- 
moderate fire weather danger conditions, which suggests 
that lightning fires occur even during fairly short drought 
anomalies. 

The type of vegetation was claimed as the most relevant 
factor for lightning ignition by Rodríguez-Pérez et al. 
(2020). We also found a clear association with vegetation, 
in terms of the height of the vegetation layer (though further 
research using fuel types would be useful), but it was out-
performed by fuel moisture metrics and meteorological 
drought proxies (dFMC and DC). Topography also played a 
role, with most ignitions occurring at high elevations. 
Increased probability of ignition has been consistently 
found across the coastal and hinterland mountain ranges 
(the Spanish Plateau, Sierra da Estrela or the Iberian 
Mountains, among others). The altitude gradient in the 
Iberian Peninsula is related to the distribution and type of 

vegetation communities. But the arrangement of the relief, 
which runs parallel to the coast (east–west) in the 
Mediterranean and the Plateau, has been recognised to 
modulate ignition by influencing air humidity through 
Foehn effects (Rodrigues et al. 2019b) and is also linked to 
storm fronts and thunderstorm episodes (Soler et al. 2021). 

Our findings were non-conclusive in terms of the role of 
the characteristics of the fire-causing flash. We did not find a 
strong signal in terms of intensity or polarity, though 
negative-current flashes seemed to be more strongly tied 
to fire ignition. Previous models in central Spain support 
increased ignition likelihood linked to the mean peak cur-
rent of negative flashes (Vecín-Arias et al. 2016), while some 
studies conducted in Catalonia (northeast Spain) found no 
specific evidence of the role played by polarity (Pineda 
et al. 2014) 

Conclusions 

In this work, we produced a daily forecast of the probability 
of natural wildfires in the Iberian Peninsula. We analysed a 
large dataset of lightning strikes, consisting of more than 
17 million observations retrieved from a comprehensive 
ground-based network of sensors. We combined lightning 
and wildfire data with environmental variables to train and 
test a binary Random Forest model. 

We identified the critical thresholds promoting lightning- 
related ignitions across the Iberian Peninsula. Lightning fires 
tend to occur when dead fuels are below 10–13% moisture 
content, with moderate drought conditions (DC > 300). We 
observed a large temporal variability linked to these drivers, 
but also a structural spatial pattern related to topography 
and vegetation structure. Natural fires concentrate in 
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mountain ranges above 1000 m with sufficient fuel load 
(vegetation height between 10 and 15 m tall). Our results 
revealed the major role played by fuel moisture content, the 
factor most sensitive to climate warming in the coming 
decades. This highlights the need for further research and 
consideration of natural ignitions in hazard mitigation 
plans, even though their contribution to fire activity is 
currently moderate. 
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Data availability. Data about lightning strikes are managed and distributed by the Spanish Meteorological Agency (AEMET), and were acquired by 
METEOGRID SL to conduct this work. Data about lightning-related ignitions were provided by the Spanish and Portuguese agencies. Spanish data come from 
the EGIF database (Estadística General de Incendios Forestales; https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion- 
disponible/incendios-forestales.aspx), available on request to the Spanish Ministry for Ecological Transition and Demographic Challenge while Portuguese fire 
data can be accessed on the ICNF website (Instituto da Conservação da Natureza e das Florestas; http://www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif). We 
retrieved elevation data from the NASADEM global digital elevation model (NASA JPL 2020). We used the global forest canopy height map by Dubayah 
et al. (2020). 
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