Underlying beliefs linked to public opinion about gene drive and pest-specific toxin for pest control

Edith A. MacDonald^{A,C}, Eric Edwards^A, Jovana Balanovic^A and Fabien Medvecky^B

^ADepartment of Conservation, Conservation House, 18–32 Manners Street, Wellington 6011, New Zealand.

^BCentre for Science Communication, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

^CCorresponding author. Email: emacdonald@doc.govt.nz

Construct	Belief	Standardised	Goodness of fit indicators							
		loading	χ^2/df	CFI	TLI	RMSEA				
Elicited	I think it's important to reduce the number of rats in New Zealand	.14	1.131	.990	.990	.008				
attitudinal beliefs	The use of gene drive would protect New Zealand's native wildlife by reducing the number of rats	.45								
	Reducing rat numbers via gene drive would protect humans from diseased spread by rats	.39								
	Using gene drive to control rat numbers would result in less chemicals being used	.31								
	Gene drive would be a humane way to rid New Zealand of rats	.46								
	Gene drive would be going against the natural way of life	62								
	I am concerned that the use of gene drive in rats could lead to mutations in other animals	79								
	I am concerned that there are unknown consequences to using gene drive to control rats	80								
	I am concerned that the use of gene drive in rats could lead to mutations and produce super rats	71								
	I am concerned that gene drive could have unforeseen effects that are harmful to humans	84								
Global	Overall, I think gene drive to control rats is extremely beneficial	.83	6.495	.989	.975	.051				
attitudinal	Overall, I think gene drive to control rats is extremely good	.97								
beliefs	Overall, I think gene drive to control rats is extremely valuable	.89								
	Overall, I think gene drive to control rats is extremely risky	.86								
Elicited	Department of Conservation	.87	19.708	.969	.934	.09				
normative	Scientists	.66								
beliefs	Farmers	.57								
	Forest and Bird	.81								
	Environmentalists	.59								
	Animal rights groups	.34								
	Government	.70								

Table S1. Confirmatory factor analysis (CFA) for constructs related to level of support for gene drive.

Global	People in my household would support the use of gene drive	.91	13.170	.995	.993	.075
normative	People like me would support the use of gene drive to controls rats	.90				
beliefs	People who are important to me would support the use of gene	.91				
	drive					
Elicited	If the government supported it	.76	23.353	.950	.918	.102
control	If universities supported it	.78				
beliefs	If businesses supported it	.61				
	If iwi or hapu supported it	.62				
	If scientific evidence can prove it works	.73				
	If there is open and honest information about the pros and cons of gene drive	.65				
	If there were strict controls only to be used for conservation	.67				
	If I had a say/was consulted in its use	.55				

Table S2. Confirmatory factor analysis (CFA) for constructs related to level of support for aerial distribution of new pest-specific toxin.

Construct	Belief	Standardised	Goodness of fit indicators						
		loading	χ^2/df	CFI	TLI	RMSEA			
Elicited	A pest specific toxin to kill rats would be more cost effective	.36	5.801	.993	.987	.047			
attitudinal	A pest specific toxin would harm our waterways	84							
beliefs	A pest specific toxin would be harmful/irritant to people	86							
	It is impossible to make a pest specific toxin that would not harm our native wildlife	62							
	Aerial spraying of a pest specific toxin could affect areas outside the target zone	84							
	A pest specific toxin that is distributed by aircraft can eradicate rats from a large area effectively	.41							
Global attitudinal	Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely beneficial	.83	6.085	.999	.996	.049			
beliefs	Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely good	.97							
	Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely valuable	.88							
	Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely risky	.90							
Elicited	Department of Conservation	.82	21.657	.969	.918	.098			
normative	Scientists	.60							
beliefs	Farmers	.53							
	Forest and Bird	.70							
	Environmentalists	.53							
	Animal rights groups	.48							
	Government	.65							

Global	People in my household would support the use aerial distribution of	.91	6.395	.998	.997	.050
normative	a new pest specific toxin to control rats					
beliefs	People like me would support the use of aerial distribution of a new	.90				
	pest specific toxin to control rats					
	People who are important to me would support the use of aerial	.93				
	distribution of a new pest specific toxin to control rats					
Elicited	If relevant groups have a chance to comment on its use	.73	28.498	.987	.960	.113
control	If there is scientific evidence to validate its use	.77				
beliefs	If there is information presented about its long-term impact on the	.76				
	environment					

Table S3. Correlation matrix for beliefs related to level of support for gene drive.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	Construct	t Alpha
1. Support for gene drive	1	.470**	.646**	.564**	.526**	.685**	527**	537**	532**	494**	579**	.825**	.933**	.867**	.854**	.425**	.446**	.370**	.338**	.216**	.079**	.330**	.751**	.797**	.709**	.499**	.427**	.434**	.308**	.591**	.451**	.428 ^{**}	.264**	Support	
2. I think it's important to reduce the number of rats in New	.470**	-	.492**	.413**	.417**	.447**	247 ^{**}	188 ^{**}	139 ^{**}	161**	207**	.461**	.464**	.453**	.394**	.319 ^{**}	.331**	.275**	.251**	.128 ^{**}	-0.007	.238**	.397**	.444**	.372**	.298**	.266**	.259**	.173**	.429**	.354**	.313**	.173**		
Zealand			. 102		,		.217	.100	.100		.201			. 100	.001	.010	.001	.210	.201	.120		.200	.001		.072	.200	.200	.200		. 120	.001	.010			
3. The use of gene drive would protect New Zealand's	.646**	.492**	ʻ 1	.554**	.578**	.617**	304**	357**	301**	337**	367**	.597**	.632**	.639**	.565**	.421**	.425**	.311**	.359**	.231**	0.040	.303**	.557**	.602**	.524**	.404**	.336**	.322**	.240**	.510**	.436**	.405**	.215**	e	
native wildlife by reducing the number of rats																																		_	
4. Reducing rat numbers via gene drive would protect	.564	.413**	.554**	1	.503**	.541**	293 ^{**}	303**	308**	260**	329**	.500**	.552**	.547**	.523**	.288**	.341**	.303**	.244**	.142**	.054 [*]	.284**	.523**	.541**	.493**	.420**	.344**	.372**	.254**	.439**	.321 ^{**}	.307**	.262	*	
humans from diseased spread by rats 5. Using gene drive to control rat numbers would result in	= **	*	·**	**	1	**	**	o**	**	**	· **	400**	**	**	**	~~ · **	o o —**	~~~**	~~~**	· ~-**	0.026	o / o **	· ~-**	- 1 0**		• • • **	o / =**	· · · · **	~~~**			· · · · **			
less chemicals being used	.526**	.417	.578**	.503**		.574**	207**	247**	175 ^{**}	247**	253**	.466**	.510**	.534**	.459**	.331**	.397**	.263**	.296**	.187 ^{**}	0.036	.243	.467**	.513**	.424**	.362**	.345**	.302**	.233**	.452**	.416 ^{**}	.389**	.284		
6. Gene drive would be humane way to rid New Zealand of	.685**	.447**	.617**	.541**	.574**	1	352**	378***	314**	338**	400**	.643**	.664**	.655**	.599**	.359**	.386**	.280**	.280***	.183**	.077**	.281**	.602**	.629**	.549**	.385**	.338**	.308**	.250**	.489**	.400**	.376**	.230**		
rats	.005	.447	.017		.574		552	570	514	550	400	.045	.004	.000	.555	.555	.500	.200	.200	.105	.077	.201	.002	.023	.543	.505	.550	.500	.230	.403	.400	.570	.230		
7. Gene drive would be going against the natural way of life	527**	·247 ^{**}	304**	293**	207**	352**	1	.467**	.538**	.453**	.496**	463**	516**	451**	521**	178**	224**	139**	102**	068**	049 [*]	158**	414**	434**	388**	275**	251**	250***	160**	276**	141**	122**	093**	Elicited attitu	ude 0.5
8. I am concerned that the use of gene drive in rats could	537**	· .188 ^{**}	357**	303**	247**	378**	.467**	1	.624**	.674**	.682**	487**	522**	477**	546**	184**	213**	163**	127**	066**	0.022	143**	413**	439**	384**	269**	217**	215**	138**	278**	160**	122**	-0.042	2	
lead to mutations in other animals	**	* **	**	**	**	**	**	**		**	**	**	**	**	**	**	**	**	**	**	0.004	**	**	**	**	**	**	**	**	**	**	*	**		
9. I am concerned that there are unknown consequences to using gene drive to control rats	532**	·139 ^{**}	301 ^{**}	308**	175**	314**	.538**	.624**	1	.560	.703**	468**	504**	439**	570**	150 ^{**}	165**	154	099**	080**	-0.024	155	449**	463**	429**	293**	212	296**	161**	219**	058**	052*	071		
10. I am concerned that the use of gene drive in rats could	494**	· .161 ^{**}	337**	260**	247**	338**	.453**	.674**	.560**	1	.610**	449**	476**	444**	509**	176**	235**	126**	129**	-0.028	0.037	111**	386**	404**	353**	240**	224**	185**	119**	264**	174**	146**	- 053*	*	
lead to mutations and produce super rats	494	101	337	200	247	330	.455	.074	.500	'	.010	449	470	444	509	170	235	120	129	0.020	0.007	144	300	404	303	240	224	100	119	204	1/4	140	055		
11. I am concerned that gene drive could have unforeseen	579**	·207 ^{**}	367**	329**	253**	400**	.496**	.682**	.703**	.610**	1	527**	563**	501**	604**	195**	208**	175**	140**	084**	0.022	152**	467**	473**	429**	291**	208**	271**	117**	285**	154**	129**	056**	e e	
effects that are harmful to humans	.010	.201		.020	.200		. 100	.002		.010		.021		.001	.001		.200									.201	.200			.200					
12. Overall I think gene drive to control rats is extremely	.825**	.461**	.597**	.500**	.466**	.643**	463**	487**	468**	449**	527**	1	.802**	.743**	.716**	.377**	.372**	.317**	.282**	.154**	0.007	.267**	.619**	.672**	.581**	.422**	.338**	.339**	.225**	.529**	.411**	.381**	.212**	*	
beneficial																										1.1									
13. Overall I think gene drive to control rats is extremely	.933**	.464	.632**	.552**	.510**	.664**	516 ^{**}	522**	504**	476	563**	.802**	1	.864**	.840**	.428**	.434**	.363**	.348**	.217**	.083**	.333**	.722**	.773**	.682**	.490**	.412**	.429**	.300**	.567**	.441**	.422**	.258	·	
good 14. Overall I think gene drive to control rats is extremely	**	***	***	**	**	* **	**	**	**	**	·**	**	**	1	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	·**	**	**	**	Global attitu	ude 0.932
valuable	.867**	.453	.639	.547	.534**	.655	451**	477	439**	444	501	.743**	.864**	1	.766**	.454	.467**	.366**	.354**	.212**	.059**	.342**	.680**	.733**	.648	.489	.414	.412	.315	.578**	.466**	.442**	.268		
15. Overall I think gene drive to control rats is extremely	.854**	.394**	.565**	.523**	.459**	.599**	521**	546**	570***	509**	604**	.716**	.840**	.766**	1	.373**	.378**	.326**	.288***	.198 ^{**}	.088**	.313**	.669**	.705**	.636**	.463**	.389**	.428**	.269**	.508**	.369**	.363**	.231**		
risky	.004	.004	.505	.020	.400	.555	521	0+0	570	003	004	./ 10	.040	.700		.575	.570	.520	.200	.130	.000	.010	.005	.705	.000	.+00	.003	.720	.203	.500	.003	.000	.201		
16. Department of Conservation	.425**	.319**	.421**	.288**	.331**	.359**	178 ^{**}	184**	150**	176**	195**	.377**	.428**	.454**	.373**	1	.591**	.482**	.710**	.487**	.262**	.557**	.391**	.421**	.387**	.393**	.338**	.287**	.302**	.423**	.377**	.383**	.250**	*	
17. Scientists	.446**	.331**	.425**	.341**	.397**	.386**	224**	213**	165**	235**	208**	.372**	.434**	.467**	.378**	.591**	1	.475**	.489**	.373**	.186**	.526**	.415**	.456**	.400**	.423**	.420**	.317**	.297**	.527**	.450**	.407**	.245**		
18. Farmers	.370**	.275**	.311**	.303**	.263**	.280**	139**	163**	154**	126**	175 ^{**}	.317**	.363**	.366**	.326**	.482**	.475**	1	.431**	.294**	.154**	.446**	.340**	.360**	.325**	.373**	.282**	.393**	.245**	.351**	.305**	.304**	.264**	×	
19. Forest and Bird	.338**	.251**	.359**	.244**	.296**	.280**	102**	127**	099**	129**	·	.282**	.348**	.354**	.288**	.710 ^{**}	.489**	.431**	1	.550**	.339**	.451**	.316**	.334**	.318**	.312**	.260**	.252**	.280**	.305**	.316**	.335**	.241**	Elicited norr	ms 0.842
20. Environmentalists	.216**	.128 ^{**}	.231**	.142**	.187**	.183 ^{**}	068**	066**	080**	-0.028	084**	.154**	.217**	.212**	.198**	.487**	.373**	.294**	.550**	1	.568**	.366**	.224**	.224**	.228**	.269**	.247**	.188**	.295**	.206**	.193**	.207**	.174**	e e	
21. Animal rights groups	.079**	-0.007	0.040	.054	0.036	.077**	049 [*]	0.022	-0.024	0.037	0.022	0.007	.083**	.059**	.088**	.262**	.186 ^{**}	.154**	.339**	.568**	1	.252**	.107**	.099**	.106**	.167**	.159**	.185**	.217**	0.023	0.024	.069**	.126**	e	
22. Government	.330**	.238**	.303**	.284**	.243**	.281**	158 ^{**}	143**	155**	144**	152 ^{**}	.267**	.333**	.342**	.313**	.557**	.526**	.446**	.451**	.366**	.252**	1	.349**	.351**	.340**	.478 ^{**}	.313**	.334**	.306**	.308**	.280**	.277**	.226**		
23. People in my household would support the use of gene	.751 ^{**}	.397**	.557**	.523**	.467**	.602**	414**	413**	449**	386**	467**	.619 ^{**}	.722**	.680**	.669**	.391**	.415**	.340**	.316**	.224**	.107**	.349**	1	.822**	.832**	.452**	.395**	.415**	.287**	.491**	.383**	.378**	.261**	e l	
drive																																			
24. People like me would support the use of gene drive to	.797**	.444	.602**	.541**	.513	.629**	434**	439**	463**	404**	473 ^{**}	.672**	.773**	.733**	.705**	.421**	.456**	.360**	.334**	.224**	.099**	.351**	.822**	1	.803**	.477**	.407**	.435**	.299**	.534**	.413**	.401 ^{**}	.286	Global norn	ns 0.931
controls rats	**	***	**	**	**	**	**	**		**	*	**	**	**	**	**	**	**	**	**	**	**	**	**	1	**	**	**	**	**	**	**	**	*	
25. People who are important to me would support the use of gene drive	.709**	.372**	.524**	.493**	.424	.549**	388	384**	429	353**	429**	.581**	.682**	.648**	.636**	.387**	.400**	.325	.318 ^{**}	.228**	.106	.340**	.832**	.803**	1	.451**	.377	.416 ^{**}	.287**	.456**	.350**	.354**	.258		
26. If the government supported it	.499**	.298**	.404**	.420**	262**	.385**	275**	260**	202**	240**	291**	.422**	.490**	.489**	.463**	.393**	.423**	.373**	.312**	.269**	.167**	170 ^{**}	.452**	.477**	.451**	1	616**	.592**	.517**	.533**	.446**	.459**	.404**	•	
27. If universities supported it	.499		.404	.420						240 224 ^{**}			.490 .412 ^{**}		.463 .389 ^{**}	.393 .338 ^{**}	.423		.260**			.478 .313 ^{**}	.452 .395 ^{**}	.477	.451 .377 ^{**}	.616**	.010	.592 .509 ^{**}		.533		.459 .479 ^{**}		·	
28. If businesses supported it	.427		.322**	.344				217 215 ^{**}			÷		.412	.414	.428**	.330 .287 ^{**}	.420 .317 ^{**}		.252**	.188 ^{**}	.185**	.334**	.395	.435**	.416 ^{**}		.509**	.509	.309	.414**		.331**	.390		
29. If iwi or hapu supported it	.308**		.322			.308			290 161 ^{**}	- 100	271 117 ^{**}			.315 ^{**}	.420 .269 ^{**}	.207 .302 ^{**}	.297**		.252		.105		.287**	.299**	.287**		.509 .509 ^{**}	' ⊀21 ^{**}	<u>ا ۲+۲.</u> 1	.380**			.358**	T	
30. If scientific evidence can prove it works	.500			.234			100 276 ^{**}			119 264 ^{**}				.578**	.508**	.302 .423 ^{**}	.527**		.305**				.207 .491 ^{**}	.299 .534 ^{**}				.421	.380**	.300	.545 .694 ^{**}	.622**			
31. If there is open and honest information about the pros	.451**				.452		276 141 ^{**}		219 058 ^{**}		285 154 ^{**}			.578 .466 ^{**}	.508 .369 ^{**}	.423 .377 ^{**}	.527 .450 ^{**}	.351			0.023		.383**	.534 .413 ^{**}	.456 .350 ^{**}				.380 .343 ^{**}	.694**		.622	.301 420**	Elicited cont	.rol 0.874
and cons of gene drive	.401	.304	.430	.321	.410	.400	14 1	100	038	1/4	134	.411	.441	.400	.309	.311	.450	.305	.310	.193	0.024	.200	.303	.413	.350	.440	.400	.314	.343	.094	'	.005	.432		
32. If there were strict controls only to be used for	.428**	.313**	.405**	.307**	.389**	.376**	- 122**	122**	052*	146**	129**	.381**	.422**	.442**	.363**	.383**	.407**	.304**	.335**	.207**	.069**	.277**	.378**	.401**	.354**	.459**	479**	.331**	.392**	.622**	.655***	1	.388**	·	
conservation																				,		,													
33. If I had a say/was consulted in its use	.264**	.173 ^{**}	.215**	.262**	.284**	.230**	093**	-0.042	071**	053	056**	.212**	.258**	.268**	.231**	.250**	.245**	.264**	.241**	.174 ^{**}	.126**	.226**	.261**	.286**	.258**	.404**	.390**	.379**	.358**	.381**	.432**	.388**	1		
**. Correlation is significant at the 0.01 level (2-tailed).																																			

**. Correlation is significant at the 0.01 level (2-tailed).*. Correlation is significant at the 0.05 level (2-tailed).

Table S4. Correlation matrix for beliefs related to level of aerial distribution of new pest-specific toxin.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Construct	Alpha
1. Support for new pest specific toxin	1	.535**	579**	628**	539**	616**	.630**	.816**	.937**	.865**	.884**	.404**	.415**	.415**	.274**	.189**	0.039	.280**	.766**	.804**	.740**	.148**	.501**	.360**	Support	0.96
2. A pest specific toxin to kill rats would be more cost effective	.535**	1	273**	304**	295**	316**	.559**	.454**	.517**	.548**	.495**	.299**	.342**	.338**	.204**	.170**	.069**	.240**	.497**	.511**	.488**	.156 ^{**}	.385**	.298**		
3. A pest specific toxin would harm our waterways	579**	273**	1	.733**	.505**	.712**	325**	488**	560**	497**	604**	178 ^{**}	154**	218**	099**	084**	-0.036	094**	499**	519**	473**	.089**	169**	065**		
 A pest specific toxin would be harmful/irritant to people 	628**	304**	.733**	1	.536**	.713**	348**	554**	610**	548**	635**	219**	207**	243**	107**	080**	0.014	140**	530**	553**	505**	.057**	221**	102**	Elicited	
5. It is impossible to make a pest specific toxin that would not harm our native wildlife	539**	295**	.505**	.536**	1	.530**	324**	487**	525**	478**	520**	203**	217**	187**	105**	057**	.054 [*]	109**	429**	445**	418**	.055*	255**	147**	attitude	0.48
6. Aerial spraying of a pest specific toxin could affect areas outside the target zone	616**	316**	.712**	.713 ^{**}	.530**	1	356**	529**	600**	527**	618**	227**	202**	246**	137**	106**	-0.013	140**	515 ^{**}	537**	494**	.061**	207**	108**		
7. A pest specific toxin that is distributed by aircraft can eradicate rats from a large area effectively	.630**	.559**	325**	348**	324**	356**	1	.529**	.594**	.638**	.567**	.293**	.362**	.320**	.204**	.140**	.045 [*]	.257**	.539**	.533**	.513**	.200**	.444***	.356**		
8. Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely beneficial	.816**	.454**	488**	554**	487**	529**	.529**	1	.809**	.744**	.733**	.353**	.352**	.326**	.212**	.105**	043 [*]	.219**	.619 ^{**}	.656**	.591**	.132**	.466**	.346**		
9. Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely good	.937**	.517**	560**	610**	525**	600**	.594**	.809**	1	.852 ^{**}	.870**	.406**	.397**	.406**	.281**	.182**	0.034	.273**	.731**	.768**	.710 ^{**}	.144**	.481**	.350**	Global	0.94
10. Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely valuable	.865**	.548**	497**	548**	478**	527**	.638**	.744**	.852**	1	.794**	.386**	.419**	.414**	.269**	.194**	.048*	.300**	.699**	.725**	.676**	.196**	.518**	.394**	attitude	0.51
11. Overall I think the aerial distribution of a new pest specific toxin to control rats is extremely risky	.884**	.495**	604**	635**	520**	618**	.567**	.733**	.870**	.794**	1	.380**	.360**	.407**	.255**	.196**	.071**	.260**	.718**	.739**	.692**	.100**	.416**	.270**		
12. Department of Conservation	.404**	.299**	178 ^{**}	219**	203**	227**	.293**	.353**	.406**	.386**	.380**	1	.493**	.440**	.579**	.407**	.258**	.537**	.354**	.363**	.352**	.274**	.358**	.330**		
13. Scientists	.415**	.342**	154**	207**	217**	202**	.362**	.352**	.397**	.419**	.360**	.493**	1	.403**	.351**	.318**	.133**	.521**	.359**	.378**	.349**	.281**	.449**	.357**		
14. Farmers	.415**	.338**	218**	243**	187**	246**	.320**	.326**	.406**	.414**	.407**	.440**	.403**	1	.301**	.253**	.208**	.418 ^{**}	.372**	.387**	.381**	.184**	.268**	.206**		
15. Forest and Bird	.274**	.204**	099**	107**	105**	137**	.204**	.212**	.281**	.269**	.255**	.579**	.351**	.301**	1	.572**	.431**	.351**	.273**	.275**	.293**	.247**	.236**	.218 ^{**}	Elicited norm	0.82
16. Environmentalists	.189**	.170**	084**	080**	057**	106**	.140**	.105 ^{**}	.182**	.194**	.196**	.407**	.318**	.253**	.572**	1	.636**	.333**	.226**	.220**	.243**	.218**	.128 ^{**}	.113**		
17. Animal rights groups	0.039	.069**	-0.036	0.014	.054 [*]	-0.013	.045	043*	0.034	.048	.071**	.258**	.133**	.208**	.431**	.636**	1	.239**	.123**	.120**	.150 ^{**}	.135**	-0.015	-0.026		
18. Government	.280**	.240***	094**	140**	109**	140**	.257**	.219 ^{**}	.273**	.300**	.260**	.537**	.521**	.418 ^{**}	.351**	.333**	.239**	1	.259**	.278**	.276**	.256**	.291**	.233**		
19. People in my household would support the use aerial distribution of a new pest specific toxin to control rats	.766**	.497**	499**	530**	429**	515**	.539**	.619**	.731**	.699**	.718 ^{**}	.354**	.359**	.372**	.273**	.226**	.123**	.259**	1	.826**	.846**	.126**	.414**	.296**		
20. People like me would support the use of aerial distribution of a new pest specific toxin to control rats	.804**	.511**	519**	553 ^{**}	445**	537**	.533**	.656**	.768**	.725**	.739**	.363**	.378**	.387**	.275**	.220**	.120**	.278**	.826**	1	.827**	.137**	.429**	.301**	Global norm	0.94
21. People who are important to me would support the use of aerial distribution of a new pest specific toxin to control rats	.740**	.488**	473**	505**	418**	494**	.513 ^{**}	.591**	.710**	.676**	.692**	.352**	.349**	.381**	.293**	.243**	.150**	.276**	.846**	.827**	1	.115**	.375**	.278**		
22. If relevant groups have a chance to comment on its use	.148**	.156**	.089**	.057**	.055*	.061**	.200**	.132**	.144**	.196**	.100**	.274**	.281**	.184**	.247**	.218**	.135**	.256**	.126**	.137**	.115**	1	.457**	.517**		
23. If there is scientific evidence to validate its use	.501**	.385**	169**	221**	255***	207**	.444**	.466**	.481**	.518**	.416 ^{**}	.358**	.449**	.268**	.236**	.128**	-0.015	.291**	.414**	.429**	.375**	.457**	1	.679 ^{**}	Elicited control	0.79
24. If there is information presented about its long-term impact on the environment	.360**	.298**	065**	102**	147**	108**	.356**	.346**	.350**	.394**	.270**	.330**	.357**	.206**	.218**	.113**	-0.026	.233**	.296**	.301**	.278**	.517**	.679**	1	CONTROL	

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).