Red deer allocate vigilance differently in response to spatio-temporal patterns of risk from human hunters and wolves

Nathan J. Proudman^{A,C,D}, Marcin Churski^A, Jakub W. Bubnicki^A, Jan-Åke Nilsson^B and Dries P. J. Kuijper^A

^AMammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1 17-230 Białowieża, Poland.

^BDepartment of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden.

^CPresent address: Oklahoma State University, 305 Noble Research Center, Stillwater, OK 74075, USA.

^DCorresponding author. Email: nathan.j.proudman@okstate.edu

Table S1. All red deer observations used in final analysis (n = 157) by year duringopen and closed hunting season

1	8					
Hunting season		2009	2012	2013	2014	2016
Closed		0	8	10	12	0
Open		10	64	49	3	1
Total		10	72	59	15	1

Table S2. Variables eliminated from analyses, based on Pearson correlation coefficient (r-value)

Eliminated variable	Correlated variable	Correlation value	<i>P</i> -value
Distance to publicly	Distance to human settlements	r = 0.440	< 0.001
available roads			
Distance to publicly	Probability of wolf encounter	r = 0.699	< 0.001
available roads			
Distance to forest edge	Distance to human settlements	r = 0.898	< 0.001
Elevation	Probability of wolf encounter	r = -0.489	< 0.001

Table shows eliminated variables' correlation with variables used in final analysis

Table S3. Predictor variables, including six interaction terms, used in competingGAMLSS models during model selection

	8
Predictor variable	
Probability of wolf encounter	
Distance to human settlements	
Hunting season	
Time of day	
Sex/age group	
Canopy height	
Canopy openness	
Probability of wolf encounter \times sex/age group	
Probability of wolf encounter \times time of day	
Distance to human settlements \times hunting seaso	on
Distance to human settlements \times time of day	
Density of non-hunting reserves × hunting sea	son
Density of non-hunting reserves × time of day	

Table S4. Best competing models ($\Delta AICc < 2$) for explaining vigilance patterns in reddeer

Model	AICc	ΔAICc	AICc
			weights
Hunting season + Density of non-hunting reserves +	661.879	0.000	0.36
Time of day +			
Density of non-hunting reserves \times Time of day			
Hunting season + Canopy openness +	662.818	0.939	0.23
Density of non-hunting reserves + Time of day +			
Density of non-hunting reserves × Time of day			
Hunting season + Density of non-hunting reserves +	663.7543	1.876	0.14
Time of day +			
Density of non-hunting reserves \times Time of day +			
Density of non-hunting reserves × Hunting season			
Hunting season + Probability of wolf encounter +	663.805	1.926	0.14
Density of non-hunting reserves + Time of day +			
Density of non-hunting reserves × Time of day			
Hunting season + Canopy height +	663.828	1.950	0.14
Density of non-hunting reserves + Time of day +			
Density of non-hunting reserves × Time of day			

Table shows AICc, Δ AICc and AICc weights for each model

Table S5. Importance of predictor variables to red deer vigilance, based on model averaging of competing GAMLSS models ΔAICc <2</th>

Table shows predictor variables elected in competing models, with the sum of AICc weights and percentage of competing models with which they were selected

Predictor variable	Sum of AICc	% containing
	weights	models
Density of non-hunting reserves × Time of day	1	100.00
Hunting season	1	100.00
Time of day	1	100.00
Density of non-hunting reserves	1	100.00
Canopy openness	0.23	20.00
Density of non-hunting reserves × Hunting season	0.14	20.00
Probability of wolf encounter	0.14	20.00
Canopy height	0.14	20.00

Table S6. Model-averaged coefficient estimates, standard error, *z*-values and *P*-values for competing (ΔAICc <2; n = 5) GAMLSS models

0 1				
Model-averaged coefficient	Estimate	s.e.	<i>z</i> -value	<i>P</i> -value
(Mu intercept)	-2.212	1.182	1.872	0.061*
(Sigma intercept)	0.389	0.163	2.385	0.017**
Hunting season: open	1.024	0.733	1.397	0.162
Density of non-hunting reserves	0.048	1.504	0.032	0.975
Time of day: night	-1.884	0.642	2.932	0.003***
Density of non-hunting reserves \times	4.085	1.460	2.798	0.005***
Time of day: night				
Canopy openness	-0.676	1.813	0.373	0.709
Density of non-hunting reserves \times	-0.311	1.248	0.250	0.803
hunting season: open				
Probability of wolf encounter	-0.289	1.686	0.171	0.864
Canopy height	0.007	0.044	0.165	0.869

Mu and sigma intercepts are shown. *** $P \le 0.01$; ** $P \le 0.05$; * $P \le 0.1$

Table S7. Supplementary analysis results from night-only observations

GAMLSS model outputs for top model ($\Delta AICc = 0.000$), and of models within 2 ΔAIC of the top model with significant vigilance responses to predictor variables (Models 1–4), are shown. Table shows 'density of non-hunting reserves' as sole significant ($\alpha < 0.001$) predictor of red deer vigilance during night hours. *** $P \le 0.001$; * $P \le 0.1$

1 0	8 8	2)	-
Parameter	Estimate	s.e.	<i>t</i> -value	<i>P</i> -value
Top model (ΔAICc = 0.000)				
(Intercept)	-9.926	5.328	-1.863	0.066*
Hunting season: open	7.173	5.346	1.342	0.183
Density of non-hunting reserves	17.985	10.902	1.650	0.103
Hunting season: open ×	-14.619	10.944	-1.336	0.185
density of non-hunting reserves				
Model 1 ($\Delta AICc = 0.478$)				
(Intercept)	-2.984	0.478	-6.244	<0.001***
Density of non-hunting reserves	3.723	0.997	3.735	0.0003***
Model 2 (ΔΑΙCc = 1.136)				
(Intercept)	-3.733	0.840	-4.443	<0.001***
Density of non-hunting reserves	3.623	0.996	3.637	<0.001***
Hunting season: open	0.879	0.778	1.129	0.262
Model 3 ($\Delta AICc = 1.547$)				
(Intercept)	-2.674	0.556	-4.806	<0.001***
Canopy openness	-4.398	4.354	-1.010	0.315
Density of non-hunting reserves	3.712	0.993	3.740	<0.001***

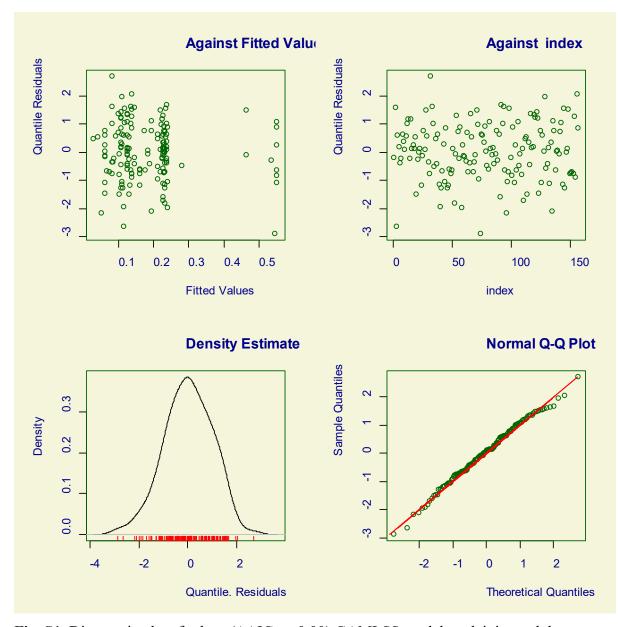
Table S8. Supplementary analysis results from day-only observations

GAMLSS model output for top models ($\Delta AICc = 0.000$), and all other models within 2 ΔAIC of top model (Models 1, 2) are shown. Table shows hunting season as sole significant ($\alpha = 0.1$) predictor of red deer vigilance during night hours. *** $P \le 0.001$; * $P \le 0.1$

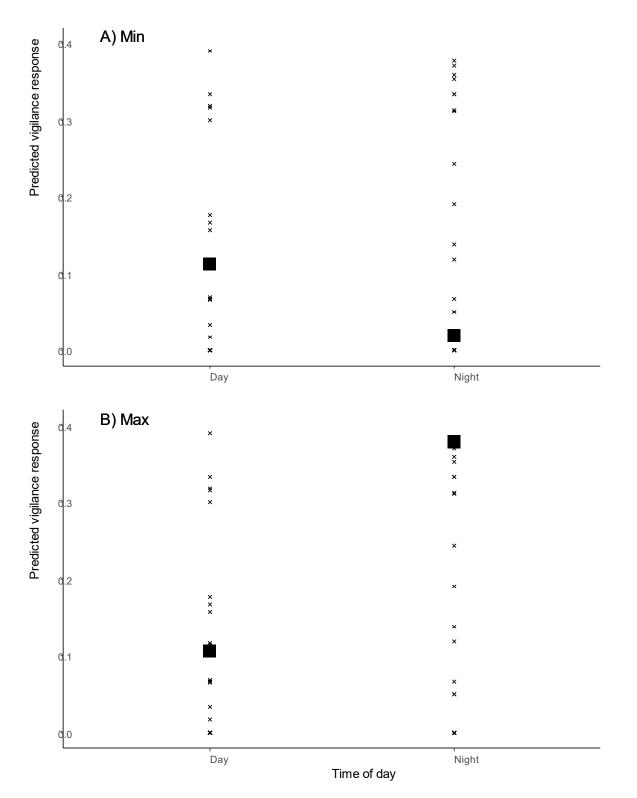
0 0	e	1 = 0.0001, 1 = 0.11		
Estimate	s.e.	<i>t</i> -value	<i>P</i> -value	
-2.192	0.490	-4.474	<0.001***	
0.884	0.528	1.674	0.099*	
-2.002e+00	5.48E-01	-3.656	<0.001***	
-5.23E-05	1.23E-04	-0.427	0.6707	
9.00E-01	5.38E-01	1.673	0.099*	
-2.099	0.521	-4.026	<0.001***	
-1.866	3.580	-0.521	0.604	
0.932	0.535	1.741	0.087*	
	Estimate -2.192 0.884 -2.002e+00 -5.23E-05 9.00E-01 -2.099 -1.866	-2.192 0.490 0.884 0.528 -2.002e+00 5.48E-01 -5.23E-05 1.23E-04 9.00E-01 5.38E-01 -2.099 0.521 -1.866 3.580	-2.192 0.490 -4.474 0.884 0.528 1.674 $-2.002e+00$ $5.48E-01$ -3.656 $-5.23E-05$ $1.23E-04$ -0.427 $9.00E-01$ $5.38E-01$ 1.673 -2.099 0.521 -4.026 -1.866 3.580 -0.521	

Table S9. Best competing models ($\Delta AICc < 2$) for explaining vigilance patterns in reddeer, when deployment year is used as predictor variable in place of hunting season

Table shows AICc and Δ AICc values for each model. Table shows deployment year


disparities do not have large effects on model selection		disparities	do	not	have	large	effects	on	model selection	
--	--	-------------	----	-----	------	-------	---------	----	-----------------	--

Model	AICc	ΔAICc
Density of non-hunting reserves \times Time of day	663.937	0.0000
Canopy openness +	665.195	1.258
Density of non-hunting reserves \times Time of day		
Deployment year +	665.843	1.907
Density of non-hunting reserves \times Time of day		


Table S10.Supplementary analysis results when deployment year is used as predictorvariable in place of hunting season

GAMLSS model outputs for top model ($\Delta AICc = 0.000$), and all models within 2 ΔAIC of the top model are shown (Models 1, 2). Table shows deployment year disparities do not have large effects on results. *** $P \le 0.001$; ** $P \le 0.01$; * $P \le 0.05$; † $P \le 0.1$

large effects off results.	$I \le 0.001, I \le 0.01, I \le 0.03, I \le 0.1$				
Parameter	Estimate	s.e.	<i>t</i> -value	P-value	
Top model ($\Delta AICc = 0.000$)					
(Intercept)	-1.145	0.4517	-2.535	0.012*	
Density of non-hunting reserves	-0.6622	1.0305	-0.643	0.521	
Time of day: night	-1.9743	0.6372	-3.099	0.002**	
Density of non-hunting reserves	4.5555	1.4235	3.200	0.002**	
× night					
Model 1 (ΔΑΙCc = 1.258)					
(Intercept)	-0.9165	0.512	-1.790	0.075†	
Canopy openness	-2.564	2.7698	-0.926	0.356	
Density of non-hunting reserves	-0.7954	1.0394	-0.765	0.445	
Time of day: night	-2.0149	0.6389	-3.154	0.002**	
Density of non-hunting reserves	4.6752	1.4265	3.277	0.001***	
× night					
Model 2 (ΔΑΙCc = 1.907)					
(Intercept)	-143.435	297.2249	-0.483	0.630	
Density of non-hunting reserves	-0.65807	1.11408	-0.591	0.556	
Time of day: night	-2.00798	0.64902	-3.094	0.002**	
Deployment year	0.07069	0.14765	0.479	0.633	
Density of non-hunting reserves	4.77233	1.48798	3.207	0.002**	
× night					

Fig. S1. Diagnostic plots for best (Δ AICc = 0.00) GAMLSS model explaining red deer vigilance patterns in response to predictor variables. Plots show the quantile residuals against the fitted values (top left), quantile residuals (top right), density of quantile residuals (bottom left), and theoretical quantiles against sample quantiles (normal Q-Q; bottom right), using plot() function in the gamlss package (Rigby and Stasinopoulos 2005) in R (R Core Team 2017).

Fig. S2. Predicted values (black squares) in vigilance behaviour of red deer (*Cervus elaphus*) during day and night hours, when A) density of protected areas and reserves is set to minimum value, and B) density of protected areas and reserves is set to maximum value, based on model-averaging of best GAMLSS models. Other predictor variables in the model were set to mean or model intercept values for continuous and categorical variables, respectively. Data points (X) are also shown.