10.1071/WR21066

Wildlife Research

Supplementary Material

Demographic estimates to assess the translocation of a threatened New Zealand amphibian

Javiera Cisternas^{A,B,*}, Luke J. Easton^C, Jennifer M. Germano^D, and Phillip J. Bishop^B

^AAumen o el eco de los montes, NGO, Coyhaique, Chile.

^BDepartment of Zoology, University of Otago, Dunedin 9054, New Zealand.

^cDepartment of Conservation, Whakapapa, Mt Ruapehu 3951, New Zealand.

^DDepartment of Conservation, Nelson 7010, New Zealand.

^{*}Correspondence to: Javiera Cisternas Aumen o el eco de los montes, NGO, Coyhaique, Chile Email: javiera.cisternas.tirapegui@gmail.com Supporting information

Appendix S1: Plot of detection (capture) histories for *Leiopelma archeyi* frog during monitoring on Pureora Forest, New Zealand, between April 2007 and November 2020, and histogram of frog individual movements within each monitoring session.

Session 1: April 2007

Monitoring dates (mean relative humidity during sampling): April 16^{th} (100%), 17^{th} (96%), 18^{th} (88%) and 30^{th} (96.2%) Search area: c. 400 m²

• Plot of frog captures:

Pureora Monitoring April 2007 4 occasions, 13 detections, 8 animals

Session 2: April 2008

Monitoring dates (mean relative humidity during sampling): March 31^{st} (100%), April 1^{st} (100%), 2^{nd} (96.6%) and 3^{rd} (100%) Search area: c. 400 m²

• Plot of frog captures:

Pureora Monitoring April 2008 4 occasions, 16 detections, 11 animals

Session 3: March 2009

Monitoring dates (mean relative humidity during sampling): March 17th (100%), 18th (98.3%) and 19th (95.7%) Search area: c. 400 m²

• Plot of frog captures:

Pureora Monitoring March 2009 3 occasions, 29 detections, 16 animals

Session 4: January 2010

Monitoring dates (mean relative humidity during sampling): January 25^{th} (99.8%), 26^{th} (100%), 27^{th} (99.5%) and 28^{th} (100%) Search area: c. 400 m²

• Plot of frog captures:

Pureora Monitoring January 2010 4 occasions, 21 detections, 14 animals

Session 5: April 2010

Monitoring dates (mean relative humidity during sampling): April 6th (100%), 7th (92.5%) and 8th (90.6%) Search area: c. 400 m²

Plot of frog captures: •

> Pureora Monitoring April 2010 3 occasions, 20 detections, 14 animals

Histogram of frog individual movements within the monitoring session •

April 2010

Session 6: April 2011

Monitoring dates (mean relative humidity during sampling): April 11th (91.4%), 12th (90.8%), 13th (90.5%) and 14th (95.7%) Search area: c. 400 m²

- Pureora Monitoring April 2011 4 occasions, 29 detections, 20 animals
- Plot of frog captures:

Session 7: December 2014

Monitoring dates (mean relative humidity during sampling): December 15^{th} (83.1%), 16^{th} (89%), 17^{th} (94.3%) and 18^{th} (96.8%) Search area: c. 400 m²

4 occasions, 31 detections, 26 animals

Pureora Monitoring December 2014

• Plot of frog captures:

Session 8: November 2015

Monitoring dates (mean relative humidity during sampling): November $24^{th}(86\%)$, 25^{th} (79.3%) and 26^{th} (86.15%) Search area: c.400 m²

• Plot of frog captures:

Pureora Monitoring November 2015, search area c. 400 m2 3 occasions, 21 detections, 19 animals

Session 9: November 2016

Monitoring dates (mean relative humidity during sampling): November 28^{th} (90.7%), 29^{th} (94.4%), 30^{th} (93.4%) and December 1^{st} (91.1%) Search area: 280 m^2

• Plot of frog captures:

Pureora Monitoring November 2016 search area = 280 m2 4 occasions, 38 detections, 31 animals

Session 10: March 2017

Monitoring dates (mean relative humidity during sampling): March 27^{th} (88.6%), 28^{th} (92.6%), 29^{th} (95.8%) and 30^{th} (87%) Search area: 280 m²

• Plot of frog captures:

Pureora Monitoring March 2017 4 occasions, 102 detections, 67 animals

Session 11: December 2017

Monitoring dates (mean relative humidity during sampling): December 4^{th} (91.8%), 5^{th} (80.5%), 6^{th} (87.5%) and 7^{th} (79.8%) Search area: 280 m²

• Plot of frog captures:

Pureora Monitoring December 2017 4 occasions, 69 detections, 58 animals

Session 12: November 2018

Monitoring dates (mean relative humidity during sampling): November 12^{th} (94.7%), 13^{th} (99%), 14^{th} (92.1%) and 15^{th} (77.5%) Search area: 280 m²

• Plot of frog captures:

Pureora Monitoring November 2018 4 occasions, 129 detections, 93 animals

Session 13: November 2019

Monitoring dates (mean relative humidity during sampling): November 11^{th} (81.5%), 12^{th} (89%), 13^{th} (91.5%) and 14^{th} (97%) Search area: 280 m²

• Plot of frog captures:

Session 14: November 2020

Monitoring dates (mean relative humidity during sampling): November 9th (90.1%), 10^{th} (93%), 11^{th} (90.8%) and 12^{th} (95.4%) Search area: 280 m²

• Plot of frog captures:

Pureora Monitoring November 2020 4 occasions, 48 detections, 40 animals

Demographic estimates to assess the translocation of a threatened amphibian from New

Zealand

Javiera Cisternas^{1*,2}, Luke J. Easton³, Jennifer M. Germano⁴, Phillip J. Bishop^{2†}

¹*– Aumen o el eco de los montes, NGO, Coyhaique, Chile javiera.cisternas.tirapegui@gmail.com

²– Department of Zoology, University of Otago, Dunedin 9054, New Zealand

³ – Department of Conservation, Whakapapa, Mt Ruapehu, 3951, New Zealand

⁴ – Department of Conservation, Nelson, 7010, New Zealand

[†] – Passed away on January 23rd 2021

Supporting information

Appendix S2: R code used for secr analysis.

• Exploratory analysis

library(secr)
options(digits=4)

```
frogs <- read.capthist(("your_capture_history_data.csv", "your_detector_layout.csv", fmt = 'XY', detector = "polygon")
```

summary(frogs)

Home-range statistics
m <- unlist(moves(frogs))</pre>

max(m) min(m) mean(m) sd(m)

```
# Histogram of movements for individuals recaptured

par(mar = c(3.2,4,1,1), mgp = c(2.1,0.6,0))

hist(m, breaks = seq(0,20), ylim=c(0,20), xlab = "Movement (m)", main = "")
```

• Density estimation

#fit a multi strata/session model with session and occasion covariates #e.g. below covariates correspond to the values used to model density for data collected after the second release of frogs. $\begin{aligned} & \text{Model} <-\text{secr.fit}(\text{multisession_capthist_object, model=D} \\ & \text{session,timecov} = \\ & \text{c}(90.7,94.35,93.35,91.1,88.6,92.6,95.8,86.95,91.8,80.45,87.45,79.75,94.7,98.95,92.05,77.45, \\ & \text{81.45,88.95,91.5,97,90.55,92.95,90.75,95.4}), \text{ sessioncov} = & \text{c}(`\text{parental care', `not parental care', `parental care', `p$

predict(Model)

• Rate of change in density

Model_2 <-secr.fit(only_sessions_equally_spaced_capthist_object, model=D~session,timecov = c(90.7,94.35,93.35,91.1,91.8,80.45,87.45,79.75,94.7,98.95,92.05,77.45,81.45,88.95,91.5,97,9 0.55,92.95,90.75,95.4), buffer = 20, detectfn = 'HEX', trace = FALSE, details = list(contrasts = list(session = MASS::contr.sdif)))

coef(Model_2)

```
#back transform coefficients
beta <- coef(Model_2)[2:5, 'beta']
sebeta <- coef(Model_2)[2:5, 'SE.beta']</pre>
```

exp(beta) exp(beta) * sqrt(exp(sebeta^2)-1)

```
lwr_beta <- coef(Model_2)[2:5, 'lcl']
upr_beta <- coef(Model_2)[2:5, 'ucl']</pre>
```

exp(lwr_beta) exp(upr_beta)

Demographic estimates to assess the translocation of a threatened amphibian from New

Zealand

Javiera Cisternas^{1*,2}, Luke J. Easton³, Jennifer M. Germano⁴, Phillip J. Bishop^{2†}

¹*– Aumen o el eco de los montes, NGO, Coyhaique, Chile javiera.cisternas.tirapegui@gmail.com

²– Department of Zoology, University of Otago, Dunedin 9054, New Zealand

- ³ Department of Conservation, Whakapapa, Mt Ruapehu, 3951, New Zealand
- ⁴ Department of Conservation, Nelson, 7010, New Zealand

[†] – Passed away on January 23rd 2021

Supporting information

Appendix S3: Ranking of secr models fitted to single-session *Leiopelma archeyi* monitoring data on Pureora Forest, New Zealand.

Ranking of secr models according to their values of AIC to select basal parameters for detection function (hazard half-normal or hazard exponential) and buffer width size (8* 'root pooled spatial variance' [value estimated with function RPSV] or 20 m). detectfn = detection function. npar = number of parameters estimated in the model. logLik = log likelihood. AICc = AIC corrected for small sample size. dAIC = difference between the AIC value of a model and the model with the lowest AIC value. AICcwt = AICc weight.

April 2007

	model	detectfn n	par logLik	AIC	AICc d	AICc	AICcwt
Halfnormal20	D~1 lambda0~1 sigma~1	hazard halfnormal	3 -90.94	187.9	193.9	0.000	0.2763
Halfnormalis	D~1 lambda0~1 sigma~1	hazard halfnormal	3 -90.94	187.9	193.9	0.000	0.2763
Exponential20	D~1 lambda0~1 sigma~1	hazard exponential	3 -91.13	188.3	194.3	0.386	0.2278
Exponentialis	D~1 lambda0~1 sigma~1	hazard exponential 3	-91.17 1	88.3 1	94.3 0.	460 0	.2195

April 2008

	model	detectfn npar logLik	AIC A	ICc dAICc AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazard	exponential 3-109.2	224.5 22	7.9 0.000 0.3224
Exponential20	D~1 lambda0~1 sigma~1 hazard	exponential 3-109.3	224.7 22	8.1 0.195 0.2925
Halfnormalis	D~1 lambda0~1 sigma~1 hazard	d halfnormal 3 -109.7	225.5 22	8.9 0.994 0.1961
Halfnormal20	D~1 lambda0~1 sigma~1 hazard	d halfnormal 3 -109.8	225.6 22	9.0 1.068 0.1890

March 2009

	model	detectfn npar	logLik	AIC	AICc o	dAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazard e	exponential 3	-171.7	349.4	351.4	0.000	0.5646
Exponential20	D~1 lambda0~1 sigma~1 hazard e	exponential 3	-172.7	351.5	353.5	2.138	0.1939
Halfnormalis	D~1 lambda0~1 sigma~1 hazard	halfnormal 3	-173.2	352.3	354.3	2.990	0.1266
Halfnormal20	D~1 lambda0~1 sigma~1 hazard	halfnormal 3	-173.3	352.5	354.5	3.184	0.1149

January 2010

	model	detectfn npar	[·] logLik	AIC	AICc d	lAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazard	exponential 3	-146.9	299.9	302.3	0.000	0.4758
Exponential20	D~1 lambda0~1 sigma~1 hazard	exponential 3	-147.1	300.2	302.6	0.380	0.3934
Halfnormalis	D~1 lambda0~1 sigma~1 hazard	halfnormal 3	-148.9	303.8	306.2	3.967	0.0655
Halfnormal20	D~1 lambda0~1 sigma~1 hazard	halfnormal 3	-148.9	303.8	306.2	3.970	0.0654

April 2010

	model	detectfn npar	logLik	AIC	AICc o	lAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 haz	zard exponential 3 -	-119.6	245.3	247.7	0.000	0.6374
Halfnormalis	D~1 lambda0~1 sigma~1 hat	zard halfnormal 3 -	-120.3	246.5	248.9	1.232	0.3443
Halfnormal20	D~1 lambda0~1 sigma~1 has	zard halfnormal 3 -	-123.2	252.4	254.8	7.100	0.0183
Exponential20	D~1 lambda0~1 sigma~1 haz	zard exponential 3 -	-125.3	256.6	259.0	11.284	0.0000

April 2011

	model	detectfn npar	r logLik	AIC	AICc o	dAICc	AICcwt
Exponential20	D~1 lambda0~1 sigma~1	hazard exponential 3	-211.5	429.0	430.5	0.000	0.5062
Exponentialis	D~1 lambda0~1 sigma~1	hazard exponential 3	-211.6	429.1	430.6	0.153	0.4689
Halfnormal20	D~1 lambda0~1 sigma~1	hazard halfnormal 3	-215.2	436.4	437.9	7.405	0.0125
Halfnormalis	D~1 lambda0~1 sigma~1	hazard halfnormal 3	-215.2	436.4	437.9	7.405	0.0125

December 2014

	model	detectfn npar	r logLik	AIC	AICc o	dAICc	AICcwt
Exponential20	D~1 lambda0~1 sigma~1 h	nazard exponential 3	-228.2	462.3	463.4	0.000	0.4981
Exponentialis	D~1 lambda0~1 sigma~1 h	nazard exponential 3	-228.3	462.6	463.7	0.261	0.4372
Halfnormal20	D~1 lambda0~1 sigma~1	hazard halfnormal 3	-230.9	467.8	468.9	5.469	0.0323
Halfnormalis	D~1 lambda0~1 sigma~1	hazard halfnormal 3	-230.9	467.8	468.9	5.469	0.0323

November 2015

	model	detectfn npar logL	ik AIC	AICc o	dAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazard ex	ponential 3-186.	5 379.2	380.8	0.000	0.3028
Halfnormalis	D~1 lambda0~1 sigma~1 hazard ha	ulfnormal 3-186.	7 379.5	381.1	0.255	0.2665
Halfnormal20	D~1 lambda0~1 sigma~1 hazard ha	ulfnormal 3-186.	7 379.5	381.1	0.273	0.2641
Exponential20	D~1 lambda0~1 sigma~1 hazard exp	ponential 3-187.2	2 380.4	382.0	1.195	0.1666

November 2016

	model	detectfn r	par logLik AIC	AICc dAICc	AICcwt
Halfnormal20	D~1 lambda0~1 sigma~1	hazard halfnormal	3 - 258.7 523.4	524.3 0.000	0.4282
Halfnormalis	D~1 lambda0~1 sigma~1	hazard halfnormal	3 - 259.0 524.0	524.9 0.649	0.3096
Exponentialis	D~1 lambda0~1 sigma~1	hazard exponential	3 - 259.8 525.5	526.4 2.175	0.1443
Exponential20	D~1 lambda0~1 sigma~1	hazard exponential	3 - 260.0 525.9	526.8 2.580	0.1179

March 2017

	model	detectfn npar	logLik	AIC	AICc	dAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazar	rd exponential 3	-685.8	1378	1378	0.00	0.6682
Exponential20	D~1 lambda0~1 sigma~1 hazar	rd exponential 3	-686.5	1379	1379	1.40	0.3318
Halfnormal20	D~1 lambda0~1 sigma~1 haza	rd halfnormal 3	-698.4	1403	1403	25.27	0.0000
Halfnormalis	D~1 lambda0~1 sigma~1 haza	rd halfnormal 3	-698.4	1403	1403	25.27	0.0000

December 2017

	model	detectfn npar	logLik	AIC	AICc o	dAICc	AICcwt
Exponential20	D~1 lambda0~1 sigma~1 hazard expo	onential 3	-486.9	979.8	980.3	0.000	0.3556
Exponentialis	D~1 lambda0~1 sigma~1 hazard ex	ponential 3	-487.2	980.3	980.8	0.511	0.2755
Halfnormal20	D~1 lambda0~1 sigma~1 hazard ha	alfnormal 3	-487.6	981.1	981.6	1.313	0.1845
Halfnormalis	D~1 lambda0~1 sigma~1 hazard ha	alfnormal 3	-487.6	981.1	981.6	1.313	0.1845

November 2018

	model	detectfn npar	logLik	AIC	AICc	dAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1 hazard exp	oonential 3	-860.9	1728	1728	0.000	0.952
Exponential20	D~1 lambda0~1 sigma~1 hazard expo	nential 3	-863.9	1734	1734	5.974	0.048
Halfnormal20	D~1 lambda0~1 sigma~1 hazard ha	lfnormal 3	-893.6	1793	1793	65.333	0.000
Halfnormalis	D~1 lambda0~1 sigma~1 hazard ha	lfnormal 3	-893.6	1793	1793	65.333	0.000

November 2019

	model	detectfn npar	logLik	AIC	AICc o	AICc A	AICcwt
Exponential20	D~1 lambda0~1 sigma~1 hazard exp	onential 3	-397.8	801.6	802.2	0.000	0.5984
Exponentialis	D~1 lambda0~1 sigma~1 hazard ex	ponential 3	-398.2	802.4	803.0	0.798	0.4016
Halfnormalis	D~1 lambda0~1 sigma~1 hazard ha	alfnormal 3	-403.8	813.7	814.3	12.116	0.0000
Halfnormal20	D~1 lambda0~1 sigma~1 hazard ha	alfnormal 3	-403.8	813.7	814.3	12.128	0.0000

November 2020

	model	detectfn	npar	logLik	AIC	AICc	dAICc	AICcwt
Exponentialis	D~1 lambda0~1 sigma~1	hazard exponential	3	-342.1	690.2	690.9	0.000	0.3821
Exponential20	D~1 lambda0~1 sigma~1	hazard exponential	3	-342.4	690.8	691.5	0.605	0.2824
Halfnormalis	D~1 lambda0~1 sigma~1	hazard halfnormal	3	-342.9	691.8	692.5	1.627	0.1694
Halfnormal20	D~1 lambda0~1 sigma~1	hazard halfnormal	3	-342.9	691.9	692.6	1.666	0.1661