
10.1071/WR22009 

Wildlife Research 

 

Supplementary Material 

Improved house mouse control in the field with a higher dose zinc phosphide bait 

Wendy A. RuscoeA,*, Peter R. BrownA, Lyn A. HindsA, Steve HenryA, Nikki Van de WeyerA,B, Freya 

RobinsonA, Kevin OhA,B,  and Richard P. DuncanA,C 

ACSIRO Health and Biosecurity, GPO Box 1700, Canberra, ACT 2601, Australia. 

BApplied BioSciences, Macquarie University, Sydney, NSW 2109, Australia. 

CCentre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, 

Bruce, ACT 2617, Australia. 

*Correspondence to: Wendy A. Ruscoe CSIRO Health and Biosecurity, GPO Box 1700, Canberra, ACT 

2601, Australia Email: Wendy.Ruscoe@csiro.au 

https://doi.org/10.1071/WR22009


Supplementary Materials:  Data Analysis

We used the mark-recapture data to estimate the number of mice at each site during each
survey (pre- and post-treatment). The approach, described in  (Royle, 2009), allowed us to
model  heterogeneity  in  detection  probabilities  arising  from individual  differences  among
mice, and differences between nights in capture probability, by implementing the model in a
Bayesian framework via data augmentation. We allowed the probability of capture to differ
between nights because we observed that the number of mice captured at each site tended to
increase over successive nights during each survey (Figure S1). 

For the ith individual mouse (i = 1 to n jk) captured on the jth site during the kth survey (pre-
or post-treatment), we had data on whether that individual was captured on the  mth night (
y ijkm=1) or not (y ijkm=0), with four nights trapping pre-treatment and five nights trapping
post-treatment. 

To allow for individuals that were present at a site but not detected, we augmented the  n jk
individuals with s jk pseudo-individuals that were captured zero times. We specified the total
number of captured plus pseudo-individuals at each site to be 400, which was a sufficiently
large number to ensure that we were specifying a non-informative prior for the total number
of individuals present at a site during a survey. We then defined an indicator variable,  z ijk,
which took the value one for each of the n jk individuals captured on a site during a survey and
was missing for each of the  s jk pseudo-individuals, and specified that  z ijk∼Bernoulli (ψ jk ),
where ψ jk  can be interpreted as the probability that a pseudo-individual was actually present
on the  jth site at the  kth survey. The total number of individuals,  N jk, on each site at each

survey is then given by: N jk= ∑
i=1

njk+ sjk

zijk

Our model comprised the following:
 z ijk∼Bernoulli (ψ jk ) (1)
y ijkm∼ Bernoulli (z ijk∗pijkm)
logit ( pijkm) Normal (dm , σ )

Where  pijkm is the probability of capture for the  ith individual on the  jth site during the  kth
survey on the  mth night,  dm is the mean capture probability  for the  mth night,  and  σ 2 is
additional variation in capture probability attributable to individual heterogeneity.

Being a Bayesian model, we had to specify prior distributions for the unknown parameters.
We followed (Link, 2013) in specifying a scale prior for the prior distribution of ψ jk:
ψ jk Beta (0.001 ,1)

We specified a hierarchical prior for each night’s capture probability:
dm Normal (μ ,σm)
μ Normal (0 ,100 )

And uniform priors for the standard deviation parameters:
σ Uniform(0 ,10)
σ m Normal (0 ,10)
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The model was fitted in a Bayesian framework using Markov Chain Monte Carlo (MCMC)
methods as implemented in the JAGS software  (Plummer, 2003) using the package jagsUI
(Kellner, 2015) called from R v. 4.0.1 (R Core Team  (2020)). The model was run with 3
chains for 10,000 iterations following a burn-in of 5,000 iterations, which was sufficient to
achieve convergence as judged by the Gelman-Rubin statistic (Gelman & Rubin, 1992).

The outcome of model fitting was an estimate of the number of mice at each site during each
survey, expressed as a posterior distribution specifying the probability that the number of
individuals  took a  particular  value,  having accounted  for  variation  in  capture  probability
among sites, nights, and individuals. There was clear increase in the probability of capture
with each successive trapping night (Figure S2), which justified modelling the between-night
heterogeneity.
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Supplementary Figures

Figure S1: The number of mice captured at each of nine sites by night of capture showing a
general  increase  in  the  number  of  mice  caught  per  night  over  time  both  pre-  and  post-
treatment.
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Figure S2: Estimated probability of capture as a function of trapping night. Points are the
mean  and  bars  the  95%  credible  intervals  of  the  posterior  distributions  of  capture
probabilities.
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