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Abstract
Context. Designing effective long-term monitoring strategies is essential for managing wildlife populations.

Implementing a cost-effective, practical monitoring program is especially challenging for widespread but locally rare
species. Early successional habitat preferred by the New England cottontail (NEC) has become increasingly rare and
fragmented, resulting in substantial declines from their peak distribution in the mid-1900s. The introduction of a possible
competitor species, the eastern cottontail (EC),may also have played a role.Uncertainty surroundinghow these factors have
contributed to NEC declines has complicated management and necessitated development of an appropriate monitoring
framework to understand possible drivers of distribution and dynamics.

Aims. Because estimating species abundance is costly, we designed presence–absence surveys to estimate species
distributions, test assumptions about competitive interactions, and improve understanding of demographic processes for
eastern cottontails (EC) andNewEngland cottontails (NEC). The survey protocol aimed to balance long-termmanagement
objectives with practical considerations associated with monitoring a widespread but uncommon species. Modelling data
arising from these observations allow for estimation of covariate relationships between species status and environmental
conditions including habitat and competition. The framework also allows inference about species status at unsurveyed
locations.

Methods. Wedesignedamonitoringprotocol to collect data across sixnorth-easternUSAstates and, usingdata collected
from the first year of monitoring, fit a suite of single-season occupancy models to assess how abiotic and biotic factors
influence NEC occurrence, correcting for imperfect detectability.

Key results. Models did not provide substantial support for competitive interactions between EC and NEC. NEC
occurrence patterns appear to be influenced by several remotely sensed habitat covariates (land-cover classes), a habitat-
suitability index, and, to a lesser degree, plot-level habitat covariates (understorey density and canopy cover).

Conclusions. We recommend continuing presence–absence monitoring and the development of dynamic occupancy
models to provide further evidence regarding hypotheses of competitive interactions and habitat influences on the
underlying dynamics of NEC occupancy.

Implications. State and federal agencies responsible for conserving this and other threatened species can engage with
researchers in thoughtful discussions, based onmanagement objectives, regarding appropriatemonitoring design to ensure
that the allocation ofmonitoring efforts provides useful inference onpopulationdrivers to informmanagement intervention.

Additional keywords: co-occurrence models, lagomorphs, species distribution models, Sylvilagus transitionalis,
wildlife management.
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Introduction

The New England cottontail (Sylvilagus transitionalis; NEC) is
the only lagomorph species endemic to the north-eastern United

States. The species, which is known to prefer early successional
habitat with abundant and dense brushy habitat, is generally
associated with land-cover conditions characterised by
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regenerating forests between 5 and 20 years post-disturbance
(Barbour and Litvaitis 1993; Litvaitis et al. 2003). In recent
decades, early successional habitats in New England have
become increasingly uncommon and more highly fragmented
because of a combination of factors, including urban
development, succession of old agricultural fields into mature
forest following farm abandonment, and forest regeneration
(Litvaitis 1993; Lorimer and White 2003). In response to
these habitat changes, the range of the NEC has declined
commensurately, with a current distribution ~15% of its peak
in the mid-1900s (Litvaitis et al. 2006; Tash and Litvaitis 2007).
The decline of NEC populations has been largely attributed to
habitat loss and fragmentation, but the early-20th Century
introduction and subsequent establishment throughout New
England of a potential competitor, the congeneric eastern
cottontail (S. floridanus; EC), may also have played a role
(Probert and Litvaitis 1996; Smith and Litvaitis 2000). Today,
theNEC is considered a species of special concern in six of seven
historically occupied states (Connecticut,Massachusetts,Maine,
New Hampshire, New York and Rhode Island; populations are
presumed extirpated from Vermont), and the species was placed
under consideration as a candidate for federal protection under
theEndangeredSpeciesAct in2006(U.S.FishandWildlifeService
2015). Despite substantial management and research focus on
habitat loss as a primary driver of the species’ decline,
uncertainty remains regarding the relative influence of specific
habitat conditionsonNECpopulationdynamics, aswell aspossible
interactive effects with introduced EC populations. Incomplete
knowledge of how these factors contribute to NEC population
dynamics and distribution has complicated the development of
management strategies to promote species recovery.

Management strategies aimed at addressing drivers of
species distributions and dynamics would benefit from the
implementation of a cost-effective, range-wide monitoring
program that combines the effort of multiple state and federal
agencies. Previous undertakings to monitor the status and
dynamics of NEC populations have been extensive and
variously implemented at local, state, and range-wide scales.
In the early 2000s, state and federal agencies conducted
presence–absence surveys throughout much of the NEC’s
range, the results of which indicated substantial declines in
abundance and distribution relative to the species’ status in
the mid-20th Century (Litvaitis et al. 2006; Tash and Litvaitis
2007). A decentralised collection of state-specific monitoring
programs has continued since that time, resulting in a long-term
dataset that provides information on the range-wide status and
distribution of NEC. These monitoring activities complement a
recently developed conservation strategy (Fuller and Tur 2012)
that specifies numerous state and federal management priorities,
including the need to collect information on the status and
contemporary range-wide distribution of EC and NEC
populations. However, there has been limited coordination of
monitoring objectives among participating states and agencies,
resulting in highly variable survey designs and a limited
collection of systematic, site-level habitat information.
Although the issue of incomplete detection has received some
attention in recent years (Brubaker et al. 2014), little effort has
beenmade to account for false negative detection ofECandNEC
during sampling and the associated introduction of bias when

assessing the importance of variables on species-distribution
estimates (MacKenzie et al. 2018).Combined, these factors have
promoted the desire to develop a collaborative, systematic and
strategicmonitoring protocol thatwill provide the data necessary
for assessing the range-wide status and dynamics of NEC
populations.

MonitoringNECstatus anddynamicsposes several challenges.
First is the species’ dependencyon transitional habitat occurring in
increasingly fragmented landscapes across a broad geographic
area. Characterising currently suitable habitat and predicting its
extent and spatial configuration has proven difficult; hence,
managers and biologists have struggled with the design of an
efficient and statistically valid monitoring program that can
reliably identify and select appropriate survey sites a priori.
One consequence of this challenge is that past survey efforts
were either inadvertently allocated to unsuitable habitat or
disproportionally allocated to areas of known or historic
occurrence under the pretence of monitoring patch status. Both
conditions are problematic, the former being inefficient for state
agencies with limited monitoring resources and the latter
representing a form of biased sampling (i.e. inference cannot be
extended beyond those habitat conditions found at the known-
occupied localities) as well as being less likely to document
colonisation events if patch turnover rates are low. Second,
although many agencies would prefer to use species abundance
or density as a state variable for management purposes, collecting
these data at a sufficient number of sampling locations for usewith
mark–recapture or other models is often cost prohibitive.
In addition to logistical considerations, estimating NEC
abundance is challenging because (1) EC and NEC are
morphologically very similar, which makes field identification
of even trapped individuals unreliable, and (2) EC and NEC sign,
including faecal pellets and tracks, are virtually indistinguishable
in the field. Therefore, identifying individuals for use in
mark–recapture or count-based models requires the use of
precise genetic (microsatellite) markers that pose significant
annual laboratory costs. An additional challenge for monitoring
NEC populations is their cryptic nature and tendency to occupy
dense, brushy habitat that hinders even indirect detection. Given
these challenges, an alternative to previous monitoringmethods is
to use occupancy (i.e. presence or absence of species from a
collection of sampling units) as a practical and informative state
variable that may represent a more cost-effective approach to
address certain questions relevant to management (MacKenzie
et al. 2002). Although estimating occupancy of EC and NEC is
complicated by the fact that species identification can be achieved
only via genetic means (mtDNA analysis; Kovach et al. 2003),
carefully designed faecal-pellet surveys can be combined with
occupancy models to test hypotheses about habitat affinities,
species co-occurrence and interactions, and patch connectivity
and metapopulation processes. Ultimately, the appropriate state
variable by which agencies evaluate the status of a species should
be determined by the specific management question(s) and
embedded within a management plan to determine what
information is needed to make informed decisions about species
recovery actions (Lyons et al. 2008; Lindenmayer et al. 2012).

With the support of the U.S. Fish and Wildlife Service and
state partners, we developed and implemented a newmonitoring
protocol that balanced the need for robust inferential data
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required to address long-term management interests, with the
practical considerations of limited resources available for
monitoring a widespread and locally rare species. We
designed monitoring guidelines to provide needed information
for managers and biologists to assess the contemporary status of
NEC populations throughout their range, as well as collect
relevant data for understanding the underlying mechanisms
that drive species dynamics. Using data collected from the
first year of monitoring under this new protocol, our specific
objectives were to develop a suite of occupancy models to
(1) assess support for the hypothesis that co-occurrence with
EC can affect NEC occupancy, (2) quantify the influence of
site-level physical habitat conditions on NEC occurrence, (3)
use best-approximating occupancy models from Objective 2 to
predict unconditional NEC occupancy probabilities at unsurveyed
locations and (4) apply the results from the first year of data
collection to refine site-selection procedures and improve
monitoring efficiency through better allocation of survey effort.

Materials and methods
Study area
The present studywas conducted throughout much of the known
historical (~1960) and contemporary range of the New England

cottontail in the north-eastern United States, including the
Hudson Valley in New York (NY), all of Connecticut (CT),
Massachusetts (MA) and Rhode Island (RI), southern New
Hampshire (NH), and southern Maine (ME). Because of the
size of the region, research and agency personnel have been
limited in their ability to monitor thoroughly across the known
NEC range. Prior to the present study, state and federal partners
designated ‘focus areas’ in each state, which collectively
represented the total area over which these agencies would
consider implementing management and conservation
activities (Fig. 1). For the present study, state and federal
agencies further reduced the sampling frame by creating a
‘survey zone’ that designated, within each focus area, a 5-km
buffer surrounding all recent historical (2009–2014) NEC
detections. We acknowledge a certain degree of circular
reasoning in defining the survey zone on the basis of recent,
known NEC occurrences, as the occurrence records were a
product of the previous surveys; hence, their use in
delineating our survey zone excluded previously unsurveyed
areas. Although this situation is not ideal for robust inference
about range-wide NEC population dynamics, an important
practical consideration of the survey design was to balance
available sampling effort for the various agencies tasked with
implementing the monitoring. Thus, we felt that it would be

(a)

(b)

Fig. 1. (a) Focus areas (unfilled polygons) and survey zones (filled polygons) representing areas targeted for
range-wide New England cottontail (NEC) and eastern cottontail (EC) monitoring in Connecticut (CT),
Massachusetts (MA), Maine (ME), New Hampshire (NH), New York (NY) and Rhode Island (RI).
(b) Predicted NEC occupancy for surveyed and unsurveyed 200 m � 200 m plots within a representative
survey area in MA. Shaded plots represent plots with low (lightest green; y < 0.05), moderate (y = 0.05–0.25)
and high (darkest green; y > 0.25) model-averaged unconditional occupancy probabilities based on models that
included only Land Cover and proportion of suitable habitat (PropSuitable) covariates.
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beneficial from a logistical standpoint to focus survey efforts on
areas that were at least somewhat likely to support NEC
populations. By reducing the effective size of each focus area,
the creation of the survey zone helped minimise logistical
challenges associated with large distances among survey
locations while retaining a large portion of the respective
ranges of EC and NEC throughout New England. However,
this decision limited our inferences for estimating and predicting
NEC occurrence to the defined survey zone (MacKenzie et al.
2018).

Site selection
Weselected sampling locations (hereafter, plots) fromwithin the
survey zone in each of the six represented states (Connecticut,
CT; Massachusetts, MA; Maine, ME; New Hampshire, NH;
NewYork, NY; and Rhode Island, RI) for the 2015–2016 survey
season, spanning December–April. Once the survey zone had
been established, each state randomly selected survey plots from
within the zone (124 total plots), with plot allocation across the
region based on the available monitoring capacity as reported by
each state. We designated a plot size of 200 m� 200 m (~4 ha),
selected because thiswas considered large enough to support full
or partial home ranges of one or more individual cottontails
(Trent and Rongstad 1974; 0.85–4.0 ha; Barbour and Litvaitis
1993; 2.5–5.0 ha),while being small enough to survey efficiently
in a few hours. For plot selection within the survey zone, each
state agency underwent the following process: the survey zone
wasdivided into four strata (althoughsomestatesused fewer than
four) on the basis of distance (0.5, 1, 3 and 5 km) from a known,
historical NEC occurrence. On the basis of the amount of effort
(number of surveys and sites) each state anticipated putting forth
during the coming field season, GIS coordinates representing
plot locations were then randomly selected within each of the
four strata. To ensure reasonably good spatial coverage of plots
throughout the survey zone, and to minimise favouring sites
closer to known-occupied areas, each state allocated~20%,20%,
40% and 20% of their total available survey effort to the 0.5-km,
1-km, 3-km and 5-km zones respectively. Survey crews were
permitted to use the randomly selected plot coordinates as any
corner of the 200 m � 200 m plot, to adjust for factors such as
local habitat conditions (i.e. avoiding large waterbodies) and
access restrictions. Each state randomly selected more sites than
was necessary, which enabled them to omit a plot if it was
determined to be infeasible or unsuitable (i.e. was mostly open
water or other uninhabitable areas), or if accesswasnot permitted
by the land owner and the plot boundaries could not be shifted as
described above. In caseswhere a plotwas omitted, crewsmoved
onto the next randomly selected plot on their list until a suitable
location was found.

Faecal-pellet sampling
Before conducting a survey, surveyors delineated 10 transects
within each plot. Generally, five transects were oriented in a
north–south direction and the other fivewere oriented east–west,
with ~30 m between transects. Surveyors could choose between
conducting one or two surveys during a single site visit (i.e. day).
For site visits where a single surveywas conducted (~40%of site
visits), one set of five transects was randomly selected for

sampling during that occasion, and the other set of five
transects was randomly selected for sampling during a
subsequent site visit (i.e. another day). For site visits where
two replicate surveys were conducted, one surveyor randomly
selected one set of five transects, and another surveyor sampled
the other set. Surveying a plot in this manner meant that two
independent pellet surveys could be conducted at the same plot
on the same day. The ability to conduct multiple surveys on a
single day was beneficial because (1) it substantially reduced the
logistical costs ofmonitoring, and (2) it provided replicate survey
data required for estimating species detection probabilities in
occupancy models. We assumed that pellet-detection skills did
not differ among observers and that rabbits were distributed
randomly with respect to transects locations (i.e. if NEC or EC
were present anywhere within a plot, faecal pellets deposited by
individuals representing either species were available for
detection by both surveyors). During sampling, each surveyor
covered the full extent of theplotby traversing their respective set
of five transects, making every attempt to search all available
habitats and collect pellets from all encountered pellet piles
(i.e. clusters of pellets) within 15 m of either side of their
respective transect routes. Pellets were sampled at a minimum
of 30 m apart to increase the opportunity of detecting each
species, if present, and to reduce the chances of collecting
pellets from the same individual rabbits, thereby minimising
the costs associated with mtDNA analyses. Additionally, on
encountering pellets that were likely from the same individual
(i.e. an isolated collection of pellets), surveyors collected only
enough pellets required for genetic analysis (at least 3) such that
some pellets remained available for detection by the other
surveyor, in the event that the transects overlapped. All
collected pellets were georeferenced and stored in individually
labelled vials that identified the plot, surveyor and date of
sampling. Whenever possible, this process was repeated on a
different day within the December–April survey season, with the
intention of conducting a maximum of four replicate surveys per
plot. We further assumed that the occupancy status for either
species remained constant among survey events.

Field-measured, plot-level covariates
For each transect, surveyors used their judgment to select one to
three points, depending on habitat heterogeneity, that best
represented the dominant understorey (to a maximum height of
~3 m) and the extent of canopy cover. In cases where more than
one distinct habitat type was present along a given transect and it
was not possible to identify a single representative point,
measurements were taken in each habitat type. For each point,
surveyors recorded GPS coordinates and visually assessed
understorey and canopy conditions within a 15-m radius
according to the following five vegetation cover classes:
(1) 0–5%, (2) 5–25%, (3) 25–50%, (4) 50–75% and
(5) 75–100%. Understorey and canopy conditions were not
measured during each plot visit; however, over the course of
the entire sampling season, surveyors recorded understorey and
vegetation conditions on at least two sets of perpendicular
transects to obtain representative samples for generalising
habitat conditions within a plot. For each plot, we then
summarised the understorey and canopy conditions by
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averaging measurements across all points, with possible values
ranging from1 (very lowunderstorey density or canopy cover) to
5 (very high understorey density or canopy cover). We
hypothesised that NEC occupancy would be positively related
to both understorey and canopy cover.

Field-measured, survey-level covariates
During each survey occasion, field crews measured several
survey-specific covariates on the basis of a priori beliefs and
previous research (Brubaker et al. 2014) about those factors that
were most likely to influence detection probability. These
included air temperature (Temp), the presence of hardpack on
the snow surface (HP), the snow depth in cm (Snow), the number
of days since the last snowfall event (Dsnow), and the
number days since the last high-wind event (Dwind). Temp,
DsnowandDwindwere represented by a singlemeasurement for
each site visit, whereas HP and Snowwere measured at multiple
representative locations along each of thefive transects surveyed
by a given observer. Similar to understorey and canopy-cover
conditions, observers used their judgment to select one to three
points along each transect that best represented theHP and Snow
conditions. Snow was a continuous covariate representing the
average snow depth across all points for each survey occasion,
whereas HP was a binary variable indicating the presence
(HP = 1) or absence (HP = 0) of hardpack at any measurement
point on a given survey occasion.We hypothesised that cottontail
detectability would be reduced by the presence of hardpack and
snow depth and positively related to temperature and time since
wind and snowfall events.

Remotely sensed and habitat suitability indexed, plot-level
covariates
To predict the probability of NEC occupancy more broadly
(i.e. status within the full survey zone across its range), as
well as identify promising new areas for surveys or
restoration activities, we required a means to obtain habitat
covariates for sites that were not directly observed through the
monitoring program. On the basis of a priori considerations of
cottontail response to habitat cover, we combined 2011National
Land Cover Database (NLCD; Homer et al. 2015) data for each
plot into the following five general land-cover classes:
Agricultural (Ag: pasture, hay or cultivated crops), Developed
(Dev: open space, low intensity,medium intensity, high intensity
or barren land), Forested (For: deciduous, evergreen or mixed
forest), Shrub–Grassland (SG: shrub, scrub or grassland), and
Wetland (Wet: emergent herbaceous or woody wetlands). We
then created land-cover covariates by calculating the proportion
of each of the five land-cover classes in each plot. We explored
several options for expressing our land-cover classes as model
covariates, including a log-ratio transformation of the
proportions (which summed to 1 in each plot) and the use of a
binary variable to indicate the dominant land-cover class in each
plot. Ultimately, we classified the status of each land-cover class
in each plot as a binary covariate that took a value of 1 if a given
land-cover class covered >33% of a plot, and 0 otherwise
(hereafter, Ag33, Dev33, For33, SG33 and Wet33). Using a
33% threshold allowed for more than one land-cover class to be
represented as plot-level covariates, while eliminating the

constraint, and associated difficulties with interpretation of
parameter estimates, imposed by land cover-class proportions
summing to 1 within each plot. Next, we created a GIS layer
representing ‘suitable habitat’bydelineatingpolygonswithin the
survey zone based on the intersection of two or more of the
following environmental GIS layers: existing conservation
lands, managed public lands, historical NEC records
(2009–2014) and forested areas that intersected with wetlands.
For each surveyed plot, we then summarised this continuous
variable as the proportion of suitable habitat (hereafter,
PropSuitable) within each plot, such that PropSuitable = 0 if
no suitable habitat was present and PropSuitable = 1 if the entire
plot was suitable habitat.

We hypothesised that NEC occupancy would be positively
related to the proportion of suitable habitat and wetland habitat.
We generally hypothesised that NEC occupancy would be
positively related to forested habitat, but we recognised the
limited precision of NLCD in being able to distinguish
between early successional and mature forests; the former, we
hypothesised,would be positively related to occupancy,whereas
the latter would be negatively related. Similar to forested habitat,
issues of partial observability of remotely sensed habitat
covariates are likely to contribute to imprecision in defining
and testing hypothesised relationships for other land-cover
predictors. We further predicted that NEC occupancy would be
negatively related to plots containing significant (>33%)
amounts of developed, shrub, grassland or agricultural habitat,
primarily because these areas tend to lack dense, brushy habitat
suitable for cover, which may render rabbits more prone to
predation. However, we note that agricultural habitat identified
by NLCD could represent both active and idle agricultural lands,
whichwehypothesisedwouldbenegativelyandpositively related
to NEC occupancy respectively. Last, plots associated with
developed land may also be influenced by human-induced
dispersal corridors, such as roads and power line rights-of-
way, which we hypothesised may render some areas more
likely to support NEC.

Hypothesis testing, model fitting and model selection
We had three primary modelling objectives. First, we evaluated
support for the hypothesis that the presence of EC influences the
probability of NEC occupancy. Second, we tested the effect of
several survey-level covariates on NEC detection probability.
Third, we assessed the influence of plot-level physical habitat
conditions (landcover, canopy cover, andunderstory vegetation)
on NEC occupancy. We used two-species (co-occurrence)
occupancy models for our first objective, hypothesising
a priori that the presence of EC has a negative effect on NEC
occupancy. Single-species occupancy models were used to test
covariate parameters for both occupancy and detection
probabilities for Objectives 2 and 3.

Two-species occupancy models
Wefirst constructed two-species occupancymodels (MacKenzie
et al. 2004) to evaluate the hypothesis that EC presence
negatively influenced the probability of NEC occupancy.
Using a conditional occupancy parameterisation of the two-
species model (Richmond et al. 2010), we assumed that EC
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was the dominant species and NEC was subordinate (i.e. the
probability of NEC occurrence was modelled as conditional on
the presence of EC). The global co-occurrence model contained
three intercepts for the occupancy parameter, namely, one for
EC, one for NEC in the presence of EC and one for NEC in the
absence of EC. This model included eight site-level covariates
(Ag33, Dev33, For33, SG33, Wet33, Canopy, Understorey, and
PropSuitable) associated with each occupancy parameter,
meaning that the influence of site-level covariates differed for
each occupancy intercept. The global model also included five
survey-level covariates in the detection component (HP, Snow,
Temp, Dsnow, and Dwind); for simplicity, we assumed that
although detection probability could differ between species, the
presenceofECdidnot influence thedetectionofNEC.Wefit four
additional models by varying occupancy-related model
parameters, for a total of five candidate models for hypothesis
testing (Table 1).We ranked the five alternative models by using
Akaike’s information criterion with a small-sample bias
adjustment (AICc; Hurvich and Tsai 1989) and assessed the
relative support for each model by calculating Akaike weights,
which range from 0 to 1, where the best-approximating model
had the highest weight. We calculated the effective sample size
for AICc as cEC þ cNEC

� �� J þ 2� S
� �

, whereyEC andyNEC

represent the mean conditional occupancy of EC and NEC
respectively, and J represents the total number of surveys
conducted across S survey plots. Last, for models that did not
assume that EC and NEC occurred independently, we assessed
the level of co-occurrence between species following
MacKenzie et al. (2018), by calculating an odds-ratio-based
species interaction factor (SIF) as:

elogit cNECð Þ�logit cNecð Þ

where yNEC represents the probability of NEC occurring in the
presence of EC and yNec denotes the probability of NEC

occurring in the absence of EC. Species interaction factors
close to 1.00 indicate no interaction between species, whereas
species interaction factors <1 or >1 indicate avoidance and
attraction respectively. The standard error and 95%
confidence interval for the SIF estimate were calculated via
the delta method, by using the ‘msm’ package in R (Jackson
2011). All two-species occupancy models were fitted using
Presence v. 12.6 (Hines 2006).

Single-species occupancy models
The two-species occupancy model described above could have
been used to assess the influence of various physical habitat
covariates on EC and NEC occupancy. However, two-species
models can be data intensive and are more complex than
required, given our second objective of assessing the
influence of habitat conditions on NEC occupancy.
Determining, from the co-occurrence models, that the data do
not support a strong influence of EC on NEC presence (see
Results) provided justification to employ single-species
occupancy models to address this objective. We first
developed a global model for NEC that contained all eight
occupancy covariates and all five detection covariates.
Holding the occupancy component as fixed, we began by
fitting 32 models representing all combinations of the five
detection covariates (excluding interactions). Prior to model-
fitting, we assessed Pearson correlations between all pairs of
predictor variables and did not include predictor variables with
correlation coefficients (r2) of >0.25 in the same model (no
correlations among predictor variables exceeded this threshold).
We then ranked their relative plausibility by using AICc and
identified thebest-approximatingdetectionmodel as theonewith
the lowest AICc score. Using the best-approximating detection
model, our final step was to fit eight candidate models
representing all combinations of Land Cover, PropSuitable
and Canopy–Understorey occupancy covariates, again

Table 1. Model-selection results for the candidate set of two-species occupancy models relating plot- and survey-level covariates to eastern and
New England cottontail occupancy (y) and detection (p) respectively

K, number of parameters; –2 LogL, –2� log(likelihood); AICc, Akaike information criterion corrected for small sample sizes; DAICc, relative differences in
AICc; and w, Akaike weight. Occupancy covariates (see text for definitions): Ag33, Dev33, For33, SG33, Wet33, PropSuitable, Canopy, and Understorey.
Detectioncovariates (see text for definitions):HP,Snow,Temp,Dsnow,Dwind.For theoccupancyportionof themodel:EC, eastern cottontail occupancy;NEC,
New England cottontail occupancy in the presence of eastern cottontails; and Nec = New England cottontail occupancy in the absence of eastern cottontails.
For the detection portion of the model: EC, eastern cottontail in the presence of New England cottontails; Ec, eastern cottontail detection in the absence of
New England cottontails; NEC, New England cottontail detection in the presence of eastern cottontails; and Nec, New England cottontail detection in the
absence of eastern cottontails. In themodel descriptions (Model), equal signs (=) indicate parameters that were set equal in eachmodel. For calculation of AICc,
the number of samples (431) was calculated as (yEC +yNEC)� J + 2� S, wherey represents themean conditional occupancy for EC (~0.30) andNEC (~0.18),

and J represents the total number of surveys (382) across all 124 plots (S).

Model K –2 LogL AICc DAICc w

y(EC intercept + NEC = Nec intercept + covariates), p(EC = Ec intercept + NEC = Nec intercept
+ covariates)

17 428.37 463.40 0.00 0.32

y(EC intercept + NEC intercept + Nec intercept + covariates), p(EC = Ec intercept + NEC = Nec
intercept + covariates)

18 427.05 464.21 0.81 0.21

y(EC intercept + EC covariates + NEC = Nec intercept + NEC = NEc covariates), p(EC = Ec
intercept + NEC = Nec intercept + covariates)

25 412.21 464.43 1.03 0.19

y(EC intercept+ECcovariates+NECintercept+Nec intercept+NECcovariates=Neccovariates),
p(EC = Ec intercept + NEC = Nec intercept + covariates)

26 410.42 464.82 1.42 0.15

y(EC intercept+ECcovariates+NECintercept+NECcovariates+Nec intercept+Neccovariates),
p(EC = Ec intercept + NEC = Nec intercept + covariates)

34 393.09 465.22 1.82 0.13
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excluding interactions. To reduce the total number of candidate
models,wegrouped covariates on the basis of the following three
general categories: Land Cover, PropSuitable and
Canopy–Understorey. For example, models that included
Land Cover always included all five land-cover covariates,
whereas models that included Canopy–Understorey always
included both Canopy and Understorey. We used AICc to
identify our 95% confidence set of models; the set of highest-
rankedmodels that has a summedAICcweight of 0.95 (Burnham
and Anderson 2002). For model selection, we calculated the
effective sample size for AICc as

cNEC � J þ S

where yNEC represents the mean estimated NEC-occupancy
probability, and J represents the total number of surveys
across S survey plots. We based all inferences on estimated
effect sizes for predictor variables from the confidencemodel set
and considered strong evidence of this effect if the 95%
confidence interval of a parameter did not overlap zero. To
facilitate interpretation, we calculated odds ratios (OR) for
each parameter estimate. All single-species occupancy models
were fitted in R v. 3.2.4 (R Core Development Team 2016), by
using the package ‘unmarked’ (Fiske and Chandler 2011).

Occupancy prediction at unsurveyed plots
Because of management-agency interest in the distribution and
dynamics over the full extent of the NEC, and the small
proportion of this extent that could be monitored, an
important component of our study was to predict NEC
occupancy at locations within the survey zone that have never
been surveyed. To accomplish this, we used a fishnet procedure
in ArcGIS v.10.4.1 (ESRI 2016) to construct a 200 m � 200 m
grid over the entire spatial extent of the current NEC range
encompassed by the survey zone delineated for the present study
(Fig. 1). Constraining the spatial extent of the grid to the existing
survey zone (described above)was done for consistencywith our
definition of the area of inference and with the ongoing survey
effort allocation and monitoring activities by the management
agencies. Restricting the grid area also served to reduce the total
number of available sampling plots from >1million to ~142 422,
which we regarded as sufficiently representative of NEC habitat.
We excluded an additional 10 064 plots that intersected the
perimeter of the survey zone and, hence, were not complete
200m� 200mplots, resulting in afinal total of 132 358 200m�
200 m plots. For each of the 132 358 plots, the 2011 NLCD
land-cover characteristics were extracted and the land-cover
classes summarised as described above to match the
covariates used in the single- and two-species occupancy
models. The proportion of suitable habitat (PropSuitable)
within each of these plots was also calculated. To account for
model-selection uncertainty (Burnham and Anderson 2002), we
then calculated model-averaged unconditional NEC-occupancy
probability for each plot by averaging (AICc-weighted)
occupancy predictions based on the 95% confidence set of
single-species models that included only remotely sensed
covariates (i.e. those models that did not include
Canopy–Understorey). Finally, we stratified plots into three
categories on the basis of the lower limit of the 60%

confidence intervals (Gerrodette et al. 2002; Hammill and
Stenson 2003; Runge et al. 2009; Wade 1998) of the
predicted occupancy probabilities: low (<0.05), moderate
(0.05–0.25) and high (>0.25). Our rationale for using the
lower limit of the 60% confidence interval was two-fold, as
follows: (1) to prevent overstating the influence of habitat
suitability (PropSuitable) in the selection of plots; and (2) to
account for imprecision of Land Cover effects estimated from
the 2015–2016 survey data.

Results

Field crews surveyed 124 plots during the 2015–2016 season and
detected at least one cottontail species in 45 plots; EC were
detected at 33 plots, NEC were detected at 21 plots, and both
species were detected at nine plots. Survey effort varied among
plots, averaging three occasions and ranging from one to six
occasions. Across all 124 plots, 14 were surveyed on one
occasion, 28 on two occasions, 19 on three occasions, 61 on
four occasions, one on five occasions and one on six occasions.
Surveyed plots were generally representative of the designated
survey zone. Comparing 124 surveyed plots with 132 358 plots
that comprised the NEC survey zone, the proportion of survey
plots containing at least one-third of a given land-cover typewere
as follows (expressed as the proportion of survey plots followed
by theproportionof surveyzone; the totals for eachexceeding1.0
because a plot can contain >1 land-cover type that exceeds 0.33):
Agricultural (0.04/0.12), Developed (0.07/0.14), Shrub–Grassland
(0.15/0.02), Wetland (0.28/0.12) and Forested (0.70/0.73).
Approximately 7% of the survey zone contained at least some
suitable habitat, with the proportion of suitable habitat averaging
<0.01 (range: 0–1.00), whereas surveyed plots contained an
average of 0.05 suitable habitat (range: 0–0.76).

Two-species occupancy models

The best-approximating two-species occupancy model
suggested that EC and NEC occupancies were independent
(i.e. no interaction between EC and NEC) and that the
occupancy-related covariate effects did not differ between
species (Table 1). This model was 1.52, 1.68, 2.13, and 2.46
times more plausible than second-, third-, fourth- and fifth-best
approximatingmodels respectively (Table1).TheestimatedSIF,
on the basis of parameter estimates from the second-best
approximating model, indicated that NEC were on average,
1.90 times more likely to occur at a location when EC were
also present. However, the 95% confidence interval for the SIF
estimate (lower CL = 0.64, upper CL = 5.64) overlapped one,
indicating that although therewas some evidence that the species
were more likely to occur together, there was considerable
uncertainty regarding the magnitude and nature of co-
occurrence interactions between EC and NEC.

Single-species occupancy models

On the basis of AICcweights for the candidate set of 32 detection
models, there was substantial model-selection uncertainty, with
the top two models receiving equivalent support (w = 0.11 and
w = 0.10 respectively). Both models contained the covariate
Dwind and differed only by inclusion of Snow in the detection
model. The parameter estimate from the top model indicated
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that for every additional day following a high-wind event
(>40 km h�1), NEC were ~1.30 times more likely to be
detected, given they were present in a plot (Fig. 2). The
second highest-ranked model suggested a negative
relationship between detection and snow depth, with a
coefficient estimate of –0.05 for Snow (95% CI, –0.11 to
0.01; Fig. 3). That the 95% confidence interval for Snow
contained zero may explain why this model did not receive
more support. Given their equivalent support, we selected the
simpler of the top two models for inclusion in subsequent model
fitting to assess the relative support for the influence of land-
cover covariates, suitable habitat and canopy and understorey
densities on NEC occupancy. On the basis of the top model, the
per occasion detection probability in the present study was
moderately high, with predicted probabilities averaging 0.76
(study-wide average of 3.44 days following a high-wind event),
and ranging from 0.53 (0 days following a high-wind event) to
0.99 (>16 days following a high-wind event; Fig. 2).

Using the best-approximating detection model, the 95%
confidence set of single-species occupancy models included six
of the eight candidate models, with the best-approximating model
including Land Cover and PropSuitable (Table 2). Parameter
estimates from the best approximating model containing
PropSuitable indicated that NEC were substantially more likely
to occupy plots with higher amounts of suitable habitat as defined
by this composite variable (Fig. 4). The scaled odds ratio for
PropSuitable indicated that NEC were 1.68 times more likely to
occupy agivenplot for every10%increase in suitable habitat.With
regards to Land Cover, NEC were 14.08 times more likely to
occupy plots that contained at least 33% agricultural (Ag33) land

cover (Table 3, Fig. 4). Similarly,NECwere 6.04 timesmore likely
to occupyplots that contained at least 33%developed (Dev33) land
cover, although the 95% confidence interval for this parameter
minimally overlapped zero (Table 3, Fig. 4). In contrast, parameter
estimates indicated that NEC were substantially less likely to
occupy plots that contained at least 33% Shrub–Grassland
(SG33) land cover (Table 3). We note that the strongly negative
parameter estimate and large standard error associated with
SG33 resulted from complete separation, because NECs were
never detected in any plot that had at least 33%
Shrub–Grassland land cover. The large, negative value reflects
anoccupancyestimate that isverynearzerowhenShrub–Grassland
cover is >33%. The logit-link function is very flat at such extreme
values, resulting in a large standard error. While the results appear
unusual, they do not necessarily indicate a lack of convergence for
this parameter and, under such circumstances, estimation of
other model parameters is unaffected; hence, we retained the
SG33 predictor variable. Parameter estimates for the remaining
covariates, namely Understory, Canopy, For33 and Wet33,
provided little evidence that these were strong predictors
because their 95% confidence intervals considerably overlapped
zero.

Grid predictions

Across all 132 358 200 m � 200 m plots, the unconditional,
model-averaged predicted mean NEC-occupancy probability
was 0.20 and ranged from 0.02 to 0.90, whereas the lower
60% confidence limit (on which plots are assigned to low,
medium and high strata) averaged 0.13 and ranged from 0.00
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Fig. 2. Per-occasion probability of detecting New England cottontail (NEC) during a five-transect survey,
given it was present at a study site, as a function of the number of days since a high-wind event (wind speeds >40
kmh�1;maximumobserved valuewas 36 days). Black line represents themean predicted per-occasion detection
probability and grey bands represent the 95% confidence interval.
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to 0.61. On the basis of the lower 60% confidence-limit
threshold, ~2% (2590) of plots were estimated to be in the
low stratum (<0.05), 85% (112 812) in the moderate stratum
(= 0.05–0.25) and 13% (16 956) in the high stratum (>0.25; Fig. 1).

Discussion

Wildlife agencies charged with conserving NEC populations
are faced with a challenging task, namely, management of a
cryptic species over a large geographic region in the face of
limited monitoring resources. Range-wide monitoring of NEC

populations poses an additional and somewhat unique challenge
in that the species co-occurs with a potential competitor and
congener that is distinguishable only by means of genetic
analysis. Combined, these challenges present significant
barriers to the development of a cost-effective, long-term
monitoring program that provides the data necessary for
assessing the predominant factors influencing the status and
dynamics of NEC and EC populations and, ultimately,
informing management decisions. Through close collaboration
with multiple state and federal agencies, we have assisted with
the identification of explicit objectives to develop and implement

Table 2. Model-selection results for the candidate set of single-season occupancy models relating plot-level
and survey-level covariates to easternandNewEnglandcottontail occupancy (y) anddetection (p) respectively
K, number of parameters; –2 LogL, –2 � log(likelihood)); AICc, Akaike information criterion corrected for small
sample sizes;DAICc, relativedifferences inAICc; andw,Akaikeweight. For allmodels, LandCover=Ag33+Dev33
+ For33 + SG33 +Wet33, and Dwind was the sole covariate in the detection model (p). For calculation of AICc, the
number of samples (193) was assumed to be (yNEC� J + S), wherey represents the mean conditional occupancy for

NEC (~0.18), and J represents the total number of surveys (382) across all 124 plots (S)

Model K –2 LogL AICc DAICc w

y(Land Cover + PropSuitable), p(Dwind) 9 156.16 175.14 0.00 0.47
y(Land Cover + PropSuitable + Canopy + Understory), p(Dwind) 11 152.77 176.23 1.09 0.28
y(Land Cover + Canopy + Understory), p(Dwind) 10 157.51 178.72 3.58 0.08
y(PropSuitable), p(Dwind) 4 171.08 179.29 4.15 0.06
y(Land Cover), p(Dwind) 8 162.86 179.64 4.50 0.05
y(PropSuitable + Canopy + Understory), p(Dwind) 6 167.36 179.81 4.67 0.05
y(Canopy + Understory), p(Dwind) 5 172.48 182.81 7.67 0.01
y(.), p(Dwind) 3 177.90 184.03 8.89 0.01
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Fig. 3. Per-occasion probability of detecting New England cottontail (NEC) during a five-transect survey,
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a standardised monitoring program that, through time and
combined with an occupancy-modelling framework, will
provide the data suitable for assessing the status, dynamics
and competitive interactions of EC and NEC populations
within the area encompassed by the sampling frame. The
ability to test hypotheses related to species interactions and
habitat-occupancy relationships will allow managers to select
the most appropriate recovery actions at the patch level,
so as to maximise the likelihood of longer-term persistence.
Monitoring species response to habitat management,
subsequent vegetation succession, and the status of potential
competitors will provide critical feedback on the effectiveness
of management policies to achieve desired population
objectives.

On the basis of analysing the spatial patterns of EC and NEC
occurrence across 124 plots, we did not find strong evidence that
NECoccurrencewas influencedby the presence ofEC.Although
both species use similar habitats and foods, EC are generally
regarded as a larger-bodied specieswithmoregeneralisedhabitat
preferences than NEC (Litvaitis et al. 2008). Eastern cottontails,
therefore, may be behaviourally dominant and either evict NEC
from sites where the species co-occur (i.e. increase local
extinction probability) or reduce the ability of NEC to
colonise previously unoccupied habitats. However, definitive
evidence for competitive interactions between these species
remains elusive. Probert and Litvaitis (1996) conducted
behavioural experiments using enclosures to evaluate
evidence for competitive interactions between EC and NEC,

and, although they found no evidence for interference
competition (i.e. neither species appeared to be behaviourally
dominant), they concluded that scramble competition, or the
more rapid use of food and habitat resources by EC, may be an
important process influencing the fate, and, hence, distribution,
of NEC throughout their range. Although we found only weak
support for EC presence influencing the probability of NEC
occurrence, with the species appearing more likely to exhibit
patterns of co-occurrence than avoidance (e.g. as a function of
similar habitat preferences), we do not suggest that our findings
warrant the conclusion that there are no population-level
consequences resulting from species co-occurrence. First,
two-species occupancy models are data intensive, and our
data were moderately sparse (one or both species were
detected at 45 of 124 plots, and both species were detected at
only nine plots) for identifying signals of these potentially
complex relationships. Second, others have noted that
inference about competitive interactions that are based solely
on spatial pattern (i.e. static representations of species
distributions) are usually weaker than those based on the
outcomes of manipulative experiments or studies directed at
modelling occupancy or population dynamics (Bailey et al.
2009; Yackulic et al. 2014; MacKenzie et al. 2018).
Our survey-design represents an advancement on existing
approaches for monitoring range-wide EC and NEC
occupancy by introducing habitat covariate information and
accounting for potential bias associated with incomplete
detection. However, our inferences related to competitive
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interactions between these species remain limited because they
are based on the spatial patterns of EC and NEC occupancy
observed during a singlefield season. Clarifying the nature of the
relationship between these species will require multiple-season
occurrence data to transition the occupancy model from static to
dynamic; we believe that ongoing monitoring and modelling
efforts should focus on estimating direct influences of EC on
NEC occupancy dynamics, i.e. local-patch turnover rates
(MacKenzie et al. 2009; Jones and Kroll 2016).

Variation in NEC occupancy was at least partially explained
by several plot-level habitat covariates,whereas remotely sensed
covariates appeared tobe strongerpredictors thanfield-measured
habitat covariates. As expected, NEC occupancy was strongly
and positively related to the proportion of suitable habitat in a
plot. However, this finding should be interpreted with caution,
because the suitable habitat covariate was derived from an
existing habitat-suitability model representing the intersection
of recent historical NEC records (2009–2014) with extant
conservation lands, managed public lands and forest–wetland
ecotones. This demonstrates the usefulness of using existing
habitat-suitability models to characterise the spatial
configuration of suitable habitat on the landscape. The
existing habitat-suitability model is essentially an index
composed of multiple remotely sensed habitat layers, making
it difficult to identify which components are the primary drivers

influencing NEC occupancy. Additional remote and field-based
measures, represented by Land Cover covariates and
Understorey and Canopy Cover measurements, were,
therefore, also used to describe plot conditions and found to
be important predictors of occupancy. As hypothesised, NEC
occupancy was positively related to the amount of dense
understorey vegetation and canopy cover, which agrees with
previous studies and general understanding of NEC habitat
preferences during winter (Barbour and Litvaitis 1993;
Litvaitis et al. 2003). In contrast to the relative imprecision of
coefficients associatedwith these in situmeasurements, remotely
sensed Land Cover covariates demonstrated stronger
relationships with NEC occupancy; however, the direction or
magnitudeof these relationships sometimescontrastedwithoura
priori hypotheses. For example, we expected that NEC
occupancy would be strongly and positively related to
forested and wetland land cover, but these showed only a
weak (and imprecise) positive relationship with NEC
occurrence. We found a strong, positive relationship between
NEC occupancy and developed and agricultural land cover,
which is in general agreement with previous studies of NEC
occurrence (Tash andLitvaitis 2007). In developed anddisturbed
lands, higher rates of NEC occurrence have, in part, been
attributed to a greater number of potential dispersal corridors
in those areas (Tash andLitvaitis 2007).Wecouldnot distinguish

Table 3. Parameter estimates (Est.), standard errors (SE), 95% confidence intervals (LCL and UCL) and odds ratios (OR) for the confidence
set of single-species occupancy models
–, parameter was not included in a model

Model-selection ranking
Parameter Best

Est. (SE) (OR)
(LCL, UCL)

Second best
Est. (SE) (OR)
(LCL, UCL)

Third best
Est. (SE) (OR)
(LCL, UCL)

Fourth best
Est. (SE) (OR)
(LCL, UCL)

Fifth best
Est. (SE) (OR)
(LCL, UCL)

Sixth best
Est. (SE) (OR)
(LCL, UCL)

Occupancy
Intercept –2.29 (0.82) –3.92 (1.31) –3.98 (1.27) –1.79 (0.29) –1.97 (0.75) –3.30 (0.95)

(–3.90, –0.69) (–6.48, –1.36) (–6.47, –1.49) (–2.35, –1.23) (–3.44, –0.50) (–5.15, –1.44)
PropSuitable 5.18 (2.20) (178.50) 4.64 (2.33) (103.9) – 4.54 (1.84) (93.64) – 4.16 (1.97) (64.07)

(0.87, 9.5) (0.07, 9.21) – (0.94, 8.14) – (0.30, 8.03)
Ag33 2.64 (1.11) (14.08) 2.1 (1.26) (8.19) 1.87 (1.25) (6.49) – 2.38 (1.08) (10.80) –

(0.47, 4.82) (–0.36, 4.56) (–0.58, 4.32) – (0.26, 4.51) –

Dev33 1.80 (0.93) (6.04) 2.17 (0.99) (8.75) 2.06 (0.99) (7.87) – 1.57 (0.91) (4.81) –

(–0.03, 3.63) (0.22, 4.12) (0.13, 4.00) – (–0.22, 3.36) –

For33 0.23 (0.70) (1.26) 0.05 (0.78) (1.06) –0.11 (0.73) (0.90) – 0.09 (0.65) (1.09) –

(–1.15, 1.61) (–1.48, 1.59) (–1.53, 1.31) – (–1.19, 1.36) –

Wet33 0.28 (0.73) (1.33) 0.24 (0.74) (1.28) 0.68 (0.67) (1.97) – 0.81 (0.65) (2.25) –

(–1.15, 1.71) (–1.21, 1.70) (–0.64, 2.00) – (–0.46, 2.08) –

SG33 –11.27 (172.6)
(0.00)

–8.96 (44.44)
(0.00)

–9.01 (41.81)
(0.00)

– –12.88 (47.81)
(0.00)

–

(–349.50, 326.90) (–96.06, 78.13) (–90.95, 72.94) – –

Understorey – 0.39 (0.28) (1.48) 0.44 (0.27) (1.56) – – 0.38 (0.22) (1.46)
– (–0.16, 0.94) (–0.08, 0.96) – – (–0.04, 0.80)

Canopy – 0.30 (0.24) (1.35) 0.37 (0.23) (1.45) – – 0.22 (0.19) (1.25)
– (–0.17, 0.77) (–0.08, 0.83) – – (–0.16, 0.60)

Detection
Intercept 0.13 (0.47) 0.15 (0.47) 0.14 (0.47) 0.13 (0.46) 0.12 (0.47) 0.17 (0.46)

(–0.79, 1.05) (–0.78, 1.07) (–0.79, 1.06) (–0.78, 1.03) (–0.80, 1.04) (–0.73, 1.06)
Dwind 0.30 (0.13) (1.35) 0.29 (0.13) (1.34) 0.29 (0.13) (1.34) 0.30 (0.13) (1.35) 0.30 (0.13) (1.35) 0.29 (0.13) (1.34)

(0.04, 0.55) (0.04, 0.55) (0.04, 0.55) (0.04, 0.55) (0.04, 0.55) (0.04, 0.54)

232 Wildlife Research C. P. Shea et al.



between active and idle agricultural lands using NLCD, but we
suspect that some agricultural areas identified remotely may
represent idle fields and, hence, early successional habitats
(or those transitioning to early successional habitats) preferred
by NEC. Although we found strong relationships between
remotely sensed land-cover covariates and NEC occurrence,
future modelling efforts would likely benefit from
modifications of, or additions to, the NLCD land-cover
classes used in the present study.

We highlight that a component of the habitat-suitability
covariate is the recent historical records of NEC occurrence,
which is a function of both the true historical NEC distribution
and historical survey effort. Therefore, this component of the
covariate will be zero in those areas that have not been subject to
previous survey efforts, even if NEC occurred in those areas
historically. As such, using a habitat-suitability index to define
the sampling frame for long-term monitoring risks limiting the
scope of inference to a static, and possibly incomplete, definition
of a species’ universe, with the result of being unable to claim a
true assessment of range-wide distribution. Even if a suitability
index captures the relationship between key habitat predictors
and species presence, it is not able to provide critical information
on which habitats do not support the species. Particularly for a
successional species such as NEC, the importance of
understanding the influence of both suitable and unsuitable
habitat on population vital rates (i.e. colonisation and
extinction), as well of being able to track habitat changes over
time, cannot be overstated. However, we note that historical
occurrence data are only one of several components of the
habitat-suitability covariate, and, therefore, the use of this
metric is not without merit. First, knowledge of the
distribution of potentially suitable habitat within the region of
interest, irrespective of current population status, is valuable for
managers and biologists who are often faced with limited time
and money available for monitoring. Indeed, the rarity of NEC,
combined with the large region targeted for monitoring and
management, means that the ability to stratify habitat on the
basis ofapriorihypotheses of suitability can serve to increase the
cost effectiveness of monitoring while maintaining statistical
rigour. Understanding the relationship between the proportion of
suitable habitat and NEC occurrence can also provide insights
regarding NEC occurrence in areas defined by the other
components of the suitability covariate, including existing
conservation lands, managed public lands and forested areas
that intersect with wetlands. However, improving understanding
of how the individual components of the suitable-habitat
covariate influence NEC occurrence will most effectively be
accomplished by including these components as separate
covariates in future modelling efforts.

By using parameter estimates from the 95% confidence set of
single-species models that included remotely sensed covariates,
we estimated model-averaged unconditional occupancy, or the
probability that an unsurveyed plot was occupied by NEC on the
basis of site-specific covariate values. Unconditional occupancy
was estimated for each of the 132 358 200 m � 200 m plots
encompassed by the NEC survey zone (Fig. 1). The ability to
predict occupancy highlights the value of using habitat
information derived from large-scale (e.g. range-wide),
remotely sensed data in conditional occupancy models (Crum

et al. 2017). Predicting occupancy over a large spatial scale was
possible because systematic data collection and this modelling
approach allowed greater understanding of the relationship
between remotely sensed habitat covariates and the
probability of NEC occurrence within the survey zone.
Further, the ability to predict unconditional occupancy
provides a useful framework for prioritising how survey effort
is allocated throughout the NEC survey zone. We used a lower
60% confidence limit threshold for unconditional occupancy to
classify plots within the entire survey zone into the following
three strata: low, moderate and high probability. By using this
information, managers could choose to weight future site
selection (and, hence, effort allocation) among the three strata.
However, we caution against excluding one or more strata,
because this may bias inference on habitat-occupancy
relationships and elevate the risk of missing changes in patch
occupancy (colonisation and extinction events) if they occur
more commonly in marginal habitat (i.e. areas at the margin of a
range contraction or expansion), or if the species is experiencing
a range-shift (i.e. as a result of climate change). Although
decisions related to optimal survey-effort allocation and
stratification will depend on specific monitoring objectives,
the ability to predict occupancy over a large spatial extent
allows for refinements in this allocation, which can be
accomplished in a variety of ways, including traditional
stratified sampling (Thompson 2012) or adaptive survey
designs (Pacifici et al. 2015).

Collected over multiple seasons, data generated from the
monitoring design proposed here could be analysed with a
spatially explicit dynamic occupancy model to assess changes in
ECandNECoccupancyunderametapopulation framework (Eaton
et al. 2014; Sutherland et al. 2014). Because metapopulation
dynamics are concerned with population turnover (extinction
and colonisation) rather than changes in abundance, and because
remaining NEC and EC populations in New England are often
viewed as being spatially structured in induced metapopulations
resulting from habitat loss and fragmentation (Litvaitis and
Villafuerte 1996), such a framework may be appropriate. In
their simplest form, dynamic occupancy models can be
implemented for a single species (e.g. NEC only) to estimate
local colonisation and extinction rates, and these dynamic rates
can, in turn, be modelled as a function of environmental covariates
(MacKenzie et al. 2003; Royle and Kery 2007; Miller and Grant
2015). Ideally, however, it is possible to implement dynamic co-
occurrence models that will jointly model EC and NEC dynamics
(MacKenzie et al. 2009, 2018; Richmond et al. 2010). Such an
approach, which has been successfully applied in several cases to
assess competitive interactions between two co-occurring species
(Baileyetal. 2009; JonesandKroll2016),wouldprovide theability
to assess the extent to which interactions with EC influence NEC
colonisationandextinctionprocesses, in addition to the influenceof
abiotic factors on those processes. In turn, this information can be
used to guide species-recovery decisions, such as optimal locations
for translocating individuals orwhere actions to exclude or remove
competitors would be best served. With respect to assessing the
influence of management activities, identifying the abiotic and
biotic conditions that promote the persistence or colonisation of
NEC, that is the conditions that managers strive to achieve when
they implement management actions, is extremely valuable. Thus,
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explicit modelling of colonisation and extinction processes as a
function of physical habitat conditions should aid in improving
understanding of both systemdynamics and the potential effects of
management activities.

Management implications

This monitoring protocol was designed to provide data suitable
for assessing the predominant factors influencing the occupancy
status (and ultimately dynamics) of New England and Eastern
cottontails within portions of the species’ ranges that are relevant
to management and conservation activities. Throughout this
process, we were confronted with several challenges that are
commonly encountered bywildlife management agencies. First,
despite a collective desire to assess andmonitor NEC abundance
and population dynamics, challenges related to the costs and
logistics of data collection and genetic analysis of faecal
pellets meant that occupancy was a practical choice of state
variable for monitoring. Second, the range of the New England
cottontail overlaps the jurisdiction of multiple state agencies,
necessitating agreement on a common monitoring protocol and
recommendations for monitoring effort that did not exceed
individual state constraints. Our decision to limit the survey
zone to areas within a 5-km buffer surrounding recent detections
of NECs was driven primarily by the species’ rarity and the
need to increase the likelihood that some proportion of surveys
would include positive NEC detection. This decision, although
effective in reducing the spatial extent of monitoring, came at a
cost with respect to inference about the predominant factors
influencing range-wide occupancy, which are limited to
the conditions of the area surveyed. This highlights the
importance of explicitly identifying monitoring objectives,
which increases the probability that a monitoring protocol
will be designed to provide the information necessary for
accomplishing management goals.
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