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ABSTRACT

Context. Invasive predators are major drivers of global biodiversity loss. Red foxes (Vulpes vulpes)
and feral cats (Felis catus) have contributed to the decline and extinction of many native species in
Australia. The deployment of poison baits to control fox populations is a widespread conservation
tool, but the effects of baiting intensity, rainfall and prey abundance on baiting effectiveness remain
poorly understood. Aims. We aimed to understand what influences the association between fox
baiting intensity, red fox activity and feral cat activity, to provide inferences about what might affect
the effectiveness of fox baiting in reducing fox activity.Methods. Weused generalised linear models
to assess how fox and cat activity changes in relation to fox baiting intensity, rainfall, native prey
availability and distance to agricultural land over a 6-year period (2006–13) in the forest
ecosystems of the Upper Warren region of south-western Australia. Key results. We found
that fox activity was negatively associated with rainfall in the previous 12 months and positively
associated with prey abundance and fox baiting intensity. We also found an interaction between
fox baiting and prey abundance, with fox activity increasing with prey activity in areas of low and
moderate baiting intensity, but remaining constant in areas of high baiting intensity. Feral cat
activity was positively associated with prey abundance and fox baiting intensity. We found no
clear relationship between fox and cat activity. Conclusions. The drivers of the association
between fox baiting and fox activity are unclear because intense fox baiting was targeted at
areas of known high fox abundance. However, our results indicate that intense fox baiting may
be effective at decoupling the positive association between fox activity and prey abundance. Our
results also suggest a positive association between fox baiting intensity and feral cat activity, thus
supporting the case for integrated fox and cat management. Implications. We caution
interpretation of our results, but note that management of invasive predators could be
improved by adjusting the intensity of management in response to changes in environmental
conditions and local context (e.g. strategically conducting intense predator management where
prey abundance is highest). Improved understanding of these associations requires a monitoring
program with sufficient replication and statistical power to detect any treatment effects.

Keywords: critical weight range, feral cat, impact evaluation, invasive predator control, lethal
control, pest management, predator–prey, red fox.

Introduction

Invasive mammalian predators are major drivers of species’ declines and extinctions 
globally (Doherty et al. 2016). Their impacts have been greatest on islands where prey 
are naïve to the threat of novel predators (Salo et al. 2007; Medina et al. 2011). 
Reducing the impacts of invasive predators on biodiversity is a key priority for 
conservation managers across the globe (Lodge et al. 2006; Russell et al. 2015). However, 
threat management interventions do not always lead to positive conservation outcomes for 
native biodiversity (Walsh et al. 2012), and effectiveness can be limited by factors such as 
the presence of natural and anthropogenic disturbances and/or co-occurring invasive 
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species (Prior et al. 2018). The ability to effectively mitigate a 
threat and subsequently improve target biodiversity values is 
an important source of uncertainty in conservation resource 
allocation (Nicol et al. 2019). Understanding the contexts in 
which invasive predator management effectively reduces 
predator densities and distributions, and subsequently 
mitigates their impacts on biodiversity, will help to ensure 
actions are targeted where and when success is likely to be 
greatest (Benshemesh et al. 2020). 

In Australia, red foxes (Vulpes vulpes) and feral cats (Felis 
catus) are a major threat to native wildlife and especially 
mammals (Woinarski et al. 2015; Kearney et al. 2019). 
Reducing predation by cats and foxes on vulnerable prey 
is therefore a key priority for conservation practitioners, 
researchers and the broader community. Lethal control 
through shooting, trapping and poison baiting is the most 
common management approach. Millions of dollars are 
spent on lethal control in Australia each year (Reddiex 
et al. 2007). Poison baiting of foxes is commonly implemented 
at the landscape scale across large parts of southern and 
eastern Australia. This can be highly effective at reducing 
fox densities and has led to increases in the abundance of 
some prey species, particularly threatened mammals 
(Dexter and Murray 2009; Wayne et al. 2011; Hunter et al. 
2018). However, there are instances where species that 
were expected to benefit from fox control continued to 
decline following the implementation of poison baiting 
programs, such as the southern brown bandicoot (Isoodon 
obesulus) in south-western Victoria (Robley et al. 2019) and 
the long-nosed bandicoot (Perameles nasuta) in Booderee 
National Park, New South Wales (Lindenmayer et al. 2018), 
suggesting that the baiting in these locations is not 
effectively reducing fox density to a level where these 
species can persist, or that other factors are limiting their 
populations (Hunter et al. 2018). 

The success of conservation actions can be affected 
by stochastic events and other abiotic and biotic drivers, 
including fire and weather (Maxwell et al. 2019). For 
example, rainfall has an important influence on the outcomes 
of invasive predator management in Australia (Tulloch et al. 
2020). Aerial baiting of feral cats in Western Australia’s 
Gibson Desert was most successful at reducing cat abundance 
during periods of low rainfall when the availability of prey 
was limited (Burrows et al. 2003). Drought conditions 
also influenced the success of a poison-baiting scheme in 
south-eastern Australia by reducing predation pressure on 
vulnerable forest-dwelling species (Claridge et al. 2010). In 
contrast, drought prior to a predator control program to 
protect the yellow-footed rock-wallaby (Petrogale xanthopus) 
reduced the ability of wallabies to recover due to competition 
for food resources between the wallabies and other invasive 
species not affected by the baiting program (goats and 
rabbits) (Sharp and McCallum 2015). High rainfall prior to 
or during poison control has negatively influenced outcomes 
because it can lead to greater plant productivity and 

irruptions of herbivorous prey species, such as mice, which 
are preferentially eaten over baits (Priddel and Wheeler 
1997; Priddel et al. 2007; Johnston et al. 2012; Tulloch 
et al. 2020). Evaluation of the outcomes of conserva-
tion actions therefore needs to be placed in appropriate 
geographic, environmental, and temporal contexts because 
the success of management actions is not uniform over 
space and time (Tulloch et al. 2020). 

Lethal fox control has been occurring in the Upper Warren 
region of south-western Australia for over 40 years to reduce 
the impacts of predation on threatened species, e.g. the woylie 
(Bettongia penicillata ogilbyi). It is suspected that, at least in 
some parts of the south-west, the long-term reduction of 
fox numbers through baiting may have led to increases in 
feral cat abundance and predation of critical-weight-range 
mammals (35–5500 g mass) by cats, due to feral cats being 
similar sized predators and likely in competition with red 
foxes (Marlow et al. 2015; Wayne et al. 2017). Feral cats 
also do not regularly consume baits targeted at foxes (Dundas 
et al. 2014). Here, we assess changes in the activity of feral 
cats and red foxes in relation to changes in fox baiting 
intensity, rainfall, prey availability, and distance to agricul-
tural land over a 6-year period (2006–13) in the Upper 
Warren. Our primary predictions are as follows: 

1. Given fox abundance and occupancy can be negatively 
affected by lethal fox control (Hunter et al. 2018), we 
expect that fox reporting rate (i.e. the number of days 
foxes were detected at a sand pad, divided by total 
survey days) would decrease in response to increasing 
spatial and temporal intensity of lethal fox baiting; 

2. Some evidence suggests that fox baiting is most effective 
following periods of low rainfall and prey availability 
(Short et al. 1997; Burrows et al. 2003; Claridge et al. 
2010), so we expect that the effectiveness of baiting at 
reducing fox reporting rate will be highest during 
periods of low rainfall; and 

3. Because feral cats can increase in abundance as a result of 
effective fox control (Marlow et al. 2015; Stobo-Wilson 
et al. 2020) and above average rainfall (Legge et al. 
2017), feral cat reporting rate will be positively related 
to increased fox baiting intensity and/or reduced fox 
activity, and these relationships will be strongest 
following periods of low rainfall. 

Methods

Study area

The Upper Warren region of south-western Australia includes 
140 000 ha of publicly managed native vegetation (Wayne 
et al. 2013). It has a mediterranean climate, with warm 
summers, cool winters and mean annual rainfall of ~650– 
1000 mm (BoM 2020). The dominant habitat types are 
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eucalypt forests and woodlands, dominated by jarrah 
(Eucalyptus marginata), marri (Corymbia calophylla) and 
wandoo (E. wandoo) trees. Fire is a prominent disturbance 
in the region, with regular prescribed burns and occasional 
wildfires (Boer et al. 2009). Most of the study area has been 
subject to one or more native timber harvesting events over 
the last 100 years, and although most land is now classified 
as either a Nature Reserve or National Park, about a third 
of the area is State Forest and remains available for timber 
harvesting until 2024 (Wayne et al. 2006). 

Red foxes and feral cats have been present in the region 
since at least the early 20th century (Abbott et al. 2014), 
and have contributed to the decline of multiple threatened 
species (Abbott 2008; Wayne et al. 2017). Since 1977, fox 
control has been implemented across the region at varying 
levels of intensity, ranging from irregular ground baiting to 
frequent aerial baiting. The frequency and extent of baiting 
across the region expanded significantly in the 1990s, moving 
to annual or twice-yearly frequencies. Quarterly aerial baiting 

began in 1997 across the region as part of the Western Shield 
program and still operates today. Since 1995, part of the study 
region has also had ground baiting applied at quarterly 
intervals (Fig. 1). In 2009, a portion of the study region 
switched to ground baiting applied at monthly intervals 
(Fig. 1), providing an opportunity to assess the impact of 
increased intensity of ground and aerial baiting on foxes 
and cats. An important consideration in the context of this 
study is that the choice of locations for increasing baiting 
frequency were not random – they were chosen based on 
prior knowledge of high abundances of small and medium 
sized mammals (e.g. woylie, numbat (Myrmecobius fasciatus), 
chuditch (Dasyurus geoffroii)) and high abundances of foxes, 
likely confounding the interpretation of baiting intensity 
and invasive predator activity. We take this into account 
when interpreting our results. Because feral cats rarely take 
fox baits (Dundas et al. 2014), it is not expected that the 
long-term fox baiting has had any direct effect on feral cat 
activity. 

Fig. 1. Map of study area in the UpperWarren, south-westernWestern Australia. Yellow circles indicate the sand pads on each of the six
transects. Shaded green areas indicate areas of public land dominated by forest. Black hashed areas are the areas subject to quarterly aerial
baiting, and the blue dashed lines show the ground baiting transects across the study region. Inset shows the study area (black rectangle) in the
broader south-western Western Australia region.
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Field surveys
From 2006 to 2013, five transects of 25 sand pads spaced at 

500-m intervals were regularly monitored (Fig. 1). From 2010 
to 2013, a sixth transect of 25 sand pads was also monitored. 
Transects were separated by 4–30 km each. Each sand pad 
was constructed by removing soil from a 1 × 4-m wide area 
on a vehicle track and replacing that channel with sand 
suitable for reading animal footprints. Throughout the study 
period, each sand pad transect was surveyed once each in 
spring and autumn each year. Surveys were also conducted 
opportunistically throughout the study period at some 
transects. To account for this variation in survey effort in 
analysis, we broke the surveys up into 21 distinct sessions 
over which to model activity dynamics. 

Each sand pad survey was conducted for at least 4–6 nights, 
and up to 10 nights. All fauna activity (i.e. tracks) detected on 
each pad each night was recorded each morning with a 
confidence rating for print identification (1 = certain, 
2 = probable, and 3 = possible). Only prints marked as 
certain (1) were used in analysis for this study. Probable 
(2) detections made up only 1% of fox detections and 4.4% 
of cat detections, so excluding these detections was not 
expected to affect any results. Foxes and cats were marked 
as present at a sand pad if at least one track was detected 
on a given sampling occasion (day). Where tracks had been 
disturbed by vehicles, rain, etc. the data from that sampling 
occasion was not considered in the models (i.e. marked as 
NA in the detection history). Where more than 10 pads 
were considered ‘disturbed’ on a given day, the entire 
transect was removed from the dataset for that sampling 
occasion. 

From the sand pad detection data, we calculated the 
reporting rate of fox and cat detections at each sand pad, 
during each survey session, as an index of activity. To 
account for uneven sampling effort, the reporting rate for 
each species was the number of survey days each species 
was detected at a sand pad, divided by the total number of 
included survey days for that sand pad. Reporting rate has 
advantages over traditional occupancy or presence/absence 
metrics because it is typically more sensitive to changes in 
abundance of predators (Nimmo et al. 2015). To illustrate 
change in the reporting rate of each species over time, we 
plot the smoothed reporting rate as a function of Julian 
date for each transect using a generalised additive model 
with five knots and a binomial error distribution. 

Covariate development
The density of predator baits deployed can vary spatially 

due to the spatial configuration of habitat, land tenure, and 
road access (ground baits), and temporally due to a range of 
factors (e.g. weather, contractor availability). Because this 
spatial and temporal variation in intensity likely influences 
the effect of baiting on target species (Hradsky et al. 2019), 
we calculated a spatially and temporally explicit baiting 
intensity metric to include in our models. Baiting intensity 

was calculated by collating baiting records from across the 
study period that included the number of baits laid, the 
dates they were laid, and the spatial footprint over which 
the baits were laid – either bait station points buffered by 
2 km (ground baiting; 2 km chosen based on typical fox 
home range size in similar environments [see Table S1 
of Carter et al. (2012)], or polygons of treatment areas 
(ground baiting and aerial baiting). These were then used 
to calculate a baiting intensity metric (number of baits per 
km2) across the study region within a 12-month period 
prior to the date of each survey. Given the relatively large 
home range of foxes and cats, rather than calculating a 
sand pad-specific baiting intensity for a given survey 
session, we extracted the baiting intensity value at each sand 
pad point and then calculated the mean baiting intensity for 
each transect across the 25 sand pads for that session. 
Therefore, each individual transect had a unique baiting 
intensity value for each session which was used in the models. 

To assess the relationship between predator activity and 
rainfall, which may influence overall food and shelter 
resources including both native prey and agricultural 
subsidies, we calculated rainfall variables at each site using 
daily precipitation mapped grids for the entire survey 
period from the Australian Bureau of Meteorology (BoM 
2020). These daily 1-km grids were then summed across 
the dates spanning 12 months prior to each survey to 
provide maps of the amount of precipitation across the 
study region in the specified time periods. These values 
were then extracted for each sand pad location to provide 
sand pad-specific estimates of the amount of rainfall in the 
previous 12 months prior to each survey. We used a 12-month 
window because this is a sufficiently large window for foxes 
and cats to respond numerically to rainfall-driven changes in 
resources (Greenville et al. 2014), and 12-month rainfall lags 
often correlate with temporal changes in the abundance 
of species (Lindenmayer et al. 2019). 

To assess the relationship between predator activity and 
small and medium-sized prey resources, we calculated a prey 
capture rate (the pooled capture rate of a subset of potential 
prey species [e.g. woylie, brushtail possum, chuditch and 
quenda] in the Upper Warren) using the dataset described 
in Wayne et al. (2017). Because not all transects were 
surveyed frequently enough to calculate these metrics for 
each survey at each transect, we built a generalised additive 
model (GAM) to interpolate capture rates between surveys. 
This meant that we could derive transect and session-
specific (i.e. spatially and temporally explicit) estimates of 
prey abundance for use as covariates in our models. The 
GAM was fitted with a single term of ‘date’ (the number of 
days since the first date of the first survey session; range 
0–2394) interacting with transect, with a limit of 11 knots 
to allow flexibility in the model while avoiding overfitting. 
The GAM was then used to predict capture rates across all 
dates and transects. To validate whether the GAM was 
appropriately predicting capture rates in periods with few 
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data, we used k-fold cross-validation with 10 randomly 
assigned folds to assess the predictive capacity of the 
models. Predictive capacity was assessed using the mean 
squared error. To account for variation in the assignment of 
the folds, we calculated a bootstrapped estimate of MSE, 
using 100 replicates and present the mean MSE and 
standard error (Table A1). 

Finally, we calculated the distance to the nearest non-
native vegetation across the study region using the inverse 
of mapped native vegetation extent in the region (DPIRD 
2020). We then excluded all land parcels smaller than 5 ha 
to remove small areas mapped without native vegetation, 
because these are unlikely to strongly influence fox and 
cat activity. Because it was difficult to distinguish between 
plantations and cleared landscapes given the dynamic 
nature of land use in the region, our distance to the nearest 
non-native vegetation includes pasture, cropped land and 
plantations of non-native eucalypt and pine. This map was 
then checked visually to ensure consistency with satellite 
imagery and local knowledge. To calculate the distance to the 
nearest agricultural land, we measured the distance between 
each sand pad point and the nearest identified patch of non-
native vegetation in R, using the sf package (Pebesma 2018). 

To ensure that all covariates used in the modelling of 
predator activity were not highly correlated (rs < 0.7), and 
thus could be included in the same model, we calculated 
the Spearman correlation coefficients for each pair of 
covariates (Table A2). The full set of covariates used in 
each of the sub-models and their hypothesised relationship 
are outlined in Table 1. 

Predator activity modelling
To identify the drivers of red fox and feral cat reporting rate 

at the sand pad scale (number of days detected vs not detected 
at each sand pad) throughout the study period, we used 
generalised linear models with binomial error distributions. 
For red foxes, we fitted models with all additive combina-
tions of baiting intensity in the previous 12 months, rainfall 
in the previous 12 months, distance to agriculture and prey 
abundance (Table 1). To further understand the relationship 
between fox activity and baiting intensity, we also tested for 
interactive effects between baiting intensity and prey 
abundance, rainfall and distance to agriculture in a separate 
model selection process. For feral cats, we used the same 
set of covariates but also included fox reporting rate. All 
models included an autoregressive temporal autocorrelation 
structure (AR1) to account for sampling sessions occurring 
close together in time, grouped by site to account for repeat 
sampling of sites. All candidate sets included a null model 
with only random effects. 

To identify the most parsimonious model within each 
species’ candidate set, we used an information theoretic 
approach, using Akaike’s information criterion adjusted for 
small sample size (AICc). We considered that the model 
with the lowest AICc was the most highly ranked and those 

within two AICc of the top-ranked model as strong 
candidates (Burnham and Anderson 2002). The most highly 
ranked models were checked for overdispersion (ϕ > 1.5), 
which can arise through higher than expected variance in 
the model (Quinn and Keogh 2002). To evaluate how well 
the most highly ranked models fitted the data, we calculated 
the variance explained by the fixed effects (marginal R2; 
Nakagawa and Schielzeth 2013). Analyses were conducted 
using the packages mgcv (Wood 2012) and MuMin (Barton 
2021). Full results of the model selection process can be 
found in the Appendix. 

Results

Red fox

Red fox activity was highly variable across the study period 
(Fig. 2). The most parsimonious model for red fox occurrence 
included a negative relationship with rainfall in the previous 
12 months (Fig. 3a, Table 2), a positive relationship with 
baiting intensity in the previous 12 months (Fig. 3b, Table 2) 
and a positive relationship with prey abundance (Fig. 3c, 
Table 2). The most parsimonious fox model had a low 
marginal pseudo R-squared value of 0.07 (Table 2). Of 
the models of fox activity that tested different interactions 
between fox baiting intensity and other variables, the most 
parsimonious model had an interaction between baiting 
intensity and prey abundance (Fig. 4, Table 2). This model 
showed a positive association between fox activity and prey 
abundance in areas of low and moderate fox-baiting intensity, 
and no association between fox activity and prey abundance 
in areas of high baiting intensity (Fig. 4, Table 2). 

Feral cats

The most parsimonious model for feral cat occurrence 
included a positive relationship with baiting intensity in the 
previous 12 months (Fig. 5a, Table 2) and a positive relation-
ship with prey abundance (Fig. 5b, Table 2). Fox reporting 
rate and distance to agriculture were not identified as 
informative predictors. The most parsimonious feral cat 
model also had limited explanatory power, with a pseudo 
marginal R-squared value of 0.05 (Table 2). 

Discussion

Evaluating the efficacy of management actions to reduce or 
eliminate a pest species is a critical component of best practice 
pest management and effective ecosystem management (Baylis 
et al. 2016). Another key dimension is to consider and evaluate 
how the success of actions can be affected by stochastic factors 
such as weather and disturbance (Tulloch et al. 2020). In the 
Upper Warren region of south-west Australia, we found that 
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Table 1. Predictor variables used in model selection process for red fox and feral cat statistical models, descriptions of the variables and predicted
relationship with each species’ sub-model.

Variable Description Hypothesised relationship

Baiting
intensity

The number of fox baits laid per km2 in the 12 months before the
time of survey. This includes ground baiting transects along roads,
which were buffered by 2 km, and aerial baiting which was conducted
over the entire study area on public land, except within 0.5 km of
private land

Negative relationship between fox reporting rate and baiting intensity
due to fox baiting killing foxes (Hunter et al. 2018)

Positive relationship between cat reporting rate and baiting intensity
due to fox baiting killing foxes, therefore reducing pressure on cats
by foxes (Marlow et al. 2015)

Rainfall The total rainfall (mm) calculated at each transect in the 12 months
prior to the first occurrence of the survey. Calculated using the daily
Bureau of Meteorology climate grids (BoM 2020)

Positive relationship between rainfall and fox activity because rainfall
increases would generally lead to an increase in food resources (small
prey, macropods, agricultural resource subsidies) (Greenville et al.
2014; Scroggie et al. 2018)

Positive relationship between rainfall and cat activity because rainfall
increases would generally lead to an increase in food resources (small
prey, macropods, agricultural resource subsidies) (Greenville et al.
2014)

Mean prey
capture rate

The mean prey trap capture rate at a transect in the 12 months prior
to the date of the first occasion of each survey session. Calculated
using capture data for species such as woylies, brushtail possums,
southern brown bandicoot and western quoll captures (i.e. a subset of
potential fox prey species) from Wayne et al. (2017)

Positive relationship between mean prey capture rate and both fox
and cat activity, as they may be tracking these prey species over time
(Arthur et al. 2012)

Distance to
non-native
vegetation

The distance (km) from each sand pad site to the nearest area of non-
native vegetation (includes tree plantations, grazing and cropping land).
Areas of non-native vegetation were identified using mapped native
vegetation in the region

Negative relationship between distance to non-native vegetation and
both fox and cat activity as both predators may be getting food
subsidies from agricultural areas, and so would be in higher
abundance closer to edges of non-native vegetation
(Hradsky et al. 2017)

Fox Fox reporting rate for each transect and session Negative relationship between cat activity and fox activity as cats can
avoid foxes in space and time (Marlow et al. 2015)

Transect The transect that the sand pad survey was conducted at, one of
Balban, Boyicup, Keninup, Moopinup, Warrup and Winnejup

Activity will be variable over space

Year The year that the survey was conducted (2006–13) Activity will be variable over time

fox activity was positively related to baiting intensity and prey 
abundance, and negatively related to rainfall. We also found an 
interaction between fox baiting and prey abundance. By 
contrast, feral cat activity was positively related to baiting 
intensity and prey abundance. However, interpretation and 
extrapolation of these results must consider the confounded 
design, whereby areas of increased fox baiting intensity were 
also areas of known high fox activity. 

Both fox and cat activity were positively related to prey 
abundance in the 12 months prior to survey, and the 
relationship between fox activity and fox baiting appears to 
decouple in areas of high prey abundance. This relationship 
suggests that invasive predator populations may be tracking 
overall prey abundance across the Upper Warren region – 
selecting areas where there is greater access to food. Given 
that red foxes are generalist carnivores (Davis et al. 2015; 
Fleming et al. 2021), it was expected that activity would be 
positively related to a general prey abundance index as 
observed here. A concurrent diet analysis from the study 
region found that, aside from sheep, foxes did not focus on 
any specific prey species, consuming a broad range of 
vertebrates, invertebrates, and fruits (Wayne et al. 2013). 
Therefore, the positive correlation seen here may also 

be due to our prey abundance index being positively 
associated with high productivity sites more generally, rather 
than foxes tracking the specific prey species included in our 
index. Because foxes and cats are more likely to use sites 
with higher prey availability, and high baiting intensity 
appears to decouple this relationship in our study, intense 
fox control efforts in these areas should continue and 
methods for cat control should continue to be explored. 

We found that red fox activity was highest when rainfall 
was relatively low (e.g. <550 mm in the previous 12 months), 
or baiting was relatively intense (e.g. >16 baits/km2 in the 
previous 12 months). The positive association between fox 
activity and baiting intensity is likely a reflection of the 
study’s management focus, whereby areas in which baiting 
intensity increased were areas known to have greater fox 
activity and threatened species abundance. The effectiveness 
of poison baiting may also be lower when rainfall occurs 
shortly after bait deployment because precipitation hastens 
deterioration of the bait and toxin (Gentle et al. 2007). 
Although we found no evidence of an interactive effect of 
baiting intensity and rainfall, rainfall-driven baiting success/ 
effectiveness has been observed in other parts of Australia 
(Burrows et al. 2003; Claridge et al. 2010). The overall 
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Fig. 2. Plot of sand pad-level reporting rates for each trapping session and smoothed mean predictions for red foxes and feral cats.
Lines and ribbons show the smoothed means and 95% confidence intervals, and points are the reporting rates for each sand pad at each
time of sampling.

Fig. 3. Predicted red fox reporting rate relationships with (a) rainfall in the previous 12 months, (b) baiting intensity in the previous
12 months and (c) prey abundance. Shaded areas show the 95% confidence intervals.

positive relationship between fox activity and baiting 
intensity may also be influenced by rapid recolonisation of 
baited areas by surviving individuals from less frequently 
baited or unbaited neighbouring areas (Newsome et al. 
2014; Kämmerle et al. 2019). 

We also found that feral cat activity was highest when both 
fox baiting intensity and prey abundance were high. The 
release of cats from suppression by a larger predator (in 
this case, the red fox) is hypothesised as a major driver of 
woylie declines in the Upper Warren (Wayne et al. 2017) 

and mammal declines elsewhere in southern Australia 
(Marlow et al. 2015; Robley et al. 2019; Cunningham et al. 
2020). These results suggest that it remains a plausible 
driver in the Upper Warren; however, it is also possible that 
higher cat activity is due to behavioural changes that result 
in cats being detected on sand pads more frequently (e.g. 
increased use of roads), rather than increased abundance. 
Regardless, management approaches that simultaneously 
control red foxes and feral cats may be required to reduce 
the impacts of invasive predators on species of concern 
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Table 2. Table of coefficient estimates, standard errors, 95% confidence intervals and pseudo R2 values for the most parsimonious model in each
of the three model candidate sets, including the fox model set, the fox interaction model set and the cat model set.

Model Covariate Estimate s.e. 95% confidence Marginal R2

intervals

Lower Upper

Fox Intercept −2.11 0.03 −2.17 −2.04 0.07

Rainfall −0.09 0.03 −0.15 −0.02

Bait intensity 0.15 0.03 0.08 0.21

Prey 0.25 0.04 0.18 0.32

Fox interaction Intercept −2.18 0.04 −2.25 −2.11 0.08

Bait intensity 0.05 0.04 −0.03 0.13

Prey 0.24 0.04 0.17 0.32

Bait intensity × Prey −0.12 0.03 −0.18 −0.06

Cat Intercept −3.06 0.05 −3.15 −2.97 0.05

Bait intensity 0.21 0.05 0.12 0.30

Prey 0.10 0.05 −0.01 0.20

Rainfall refers to the amount of rainfall (mm) in the 12 months prior to trapping, baiting intensity refers to the transect-scale baiting intensity in the 12 months prior to
each trapping session, and prey refers to the transect-scale mean prey abundance in the 12 months prior to trapping. Bolded covariates are those with 95% confidence
intervals that do not overlap zero.

Fig. 4. Predicted red fox reporting rate relationships with an
interaction between baiting intensity in the previous 12 months and
prey abundance in the previous 12 months. Shaded areas show the
95% confidence intervals. Baiting intensity values represent the 10th,
50th and 90th percentiles of fox baiting intensity (baits per km2) in
the 12 months prior to each survey period.

(Marlow et al. 2015; Comer et al. 2020). This remains a 
difficult proposition, given the effectiveness of lethal cat 
control methods at the landscape scale is highly variable 
between years and locations (Christensen et al. 2013; 
Comer et al. 2020; Doherty et al. 2022). To date, effective 
broadscale control of feral cats in temperate environments 
has been demonstrated in subtropical, mediterranean and 
arid ecosystems through aerial baiting programs, but the 
effectiveness is inconsistent (Comer et al. 2018, 2020; Lohr 
and Algar 2020). In places where broadscale feral cat 
baiting is ineffective, including areas with high and reliable 
food availability, alternative approaches may be required 

for effective and sustained control of feral cats and protec-
tion of key areas (e.g. refuges) and wildlife populations. One 
option is grooming traps that automatically shoot a poison 
onto cats and and do not rely on low food availability to be 
effective (Moseby et al. 2020). 

Testing the association between fox baiting and fox activity 
was complicated by the increase in baiting intensity occurring 
in locations known to have high fox and prey abundance. 
Further, because the changes in reporting rate over the 
course of the study were highly variable and may not be 
correlated directly with abundance, the relationships among 
foxes, cats and poison baiting are difficult to interpret. The 
variable reporting rates, low variance explained by the 
highest ranked models (<0.10 R2), and the lack of unbaited 
areas to serve as controls in this study (a typical issue for 
large-scale baiting programs that specifically aim to cover 
as broad an area as possible and conserve threatened 
species) are important considerations for the interpretation 
of these results. 

Monitoring predators with sufficient power to detect 
changes in abundance, rather than site occupancy or use, in 
response to management interventions is difficult (Bal et al. 
2018; Geyle et al. 2020). The present study focuses on 
changes in fox and cat activity using sand pads, but changes 
in baiting intensity may impact predator abundance/density 
more strongly than predator activity. Activity, abundance, 
and density estimates for low density carnivores are generally 
correlated (Clare et al. 2015), but presence/absence data are 
typically less sensitive to drivers of population change (e.g. 
lethal control) than density and abundance (Linden et al. 
2017). Although this study is based on a historical dataset 
that used sand pad monitoring, camera trapping is now a 
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Fig. 5. Predicted feral cat occurrence relationships with (a) baiting intensity in the previous 12 months and
(b) prey abundance. Shaded areas show the 95% confidence intervals.

preferred method for passive monitoring of predators (Meek 
et al. 2015). Monitoring designs that use multiple approaches 
(e.g. GPS tracking, DNA metabarcoding, camera or live 
trapping and diet analysis), and provide robust abundance 
or density estimates of the species being managed and the 
species of conservation concern, are therefore required to 
appropriately evaluate the outcomes of invasive predator 
management (Le Pla et al. 2022). 

Our study suggests that invasive predator management 
should rarely be ‘set-and-forget.’ Rather, managers may need 
to adjust effort and intensities of actions according to external 
drivers such as weather (e.g. rainfall) and biotic factors 
(e.g. prey abundance), and monitor the outcomes with 
sufficient statistical power in order to maximise outcomes 
for biodiversity. Our results point to additional complexities 
influencing the effectiveness of fox baiting, suggesting 
whole-of-ecosystem approaches are necessary to fully 
disentangle how invasive predator management can be 
successful into the future. 

Supplementary material

Supplementary material is available online. 
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