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Context. Rodents in many parts of the world perform an important ecosystem function as
dispersers of mycorrhizal fungal spores. These fungi are vital to nutrient uptake in plant
communities, but many of the fungal taxa that form these associations have fruiting bodies that
are reliant on animals for their spore dispersal. Aims. Numerous studies have focused on the
ecological importance of Australian marsupials (especially members of the Potoroidae) for the
dispersal of these ecologically important fungi. We chose to focus this study on the role of
murid rodents in the dispersal of these fungi in eastern Australia. Methods. To compare fungal
taxa in murid diets, we trapped rodents in three regions of eastern Australia; our study sites
spanned over 2000 km from temperate eucalypt forests to tropical eucalypt and tropical
rainforest habitats. We performed microanalysis on all scats to determine whether fungi were
consumed and which taxa were being eaten. Statistical analysis was conducted to investigate
trends in levels of mycophagy among species and habitats. Key results. We examined 10
rodent species, and all were shown to ingest mycorrhizal fungi to varying degrees. The diversity,
abundance and specific fungal taxa consumed varied depending on the site and forest type. In
drier forests dominated by Eucalyptus spp., the fungal taxa consumed and dispersed were
primarily ectomycorrhizal; in wetter rainforest habitats, the fungal diversity consumed was far
lower and included primarily vesicular arbuscular fungi. We provide the first evidence of
mycophagy by grassland melomys (Melomys burtoni) and Cape York melomys (Melomys capensis).
Conclusions. Our findings highlight the importance of rodents as dispersers of mycorrhizal
fungi across a variety of habitats from temperate to tropical forests of eastern Australia.
Implications. This study increases the existing knowledge of rodent diets and habitat
requirements. It also provides a new angle for mammal conservation efforts, given the vital
nature of the ecosystem service provided by these small and frequently overlooked mammals.
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A wide array of vertebrates, including mammals, birds and reptiles, consume fungi and 
disperse fungal spores through their scats (Fogel and Trappe 1978; Claridge and May 
1994; Nuske et al. 2017a; Elliott et al. 2019a, 2019b, 2022; Caiafa et al. 2021). Animal-
facilitated fungal dispersal directly affects many aspects of ecosystems around the world 
in a variety of ways, including plant nutrient uptake, fungal community structure, 
selection of fungal fruiting morphologies, soil bioturbation, soil microbial community 
composition and overall nutrient cycling (Cázares and Trappe 1994; Johnson 1996; 
Maser et al. 2008; Elliott and Marshall 2016; Dundas et al. 2018; Valentine et al. 2018; 
Miranda et al. 2019; Nuske et al. 2019; Vašutová et al. 2019; Elliott et al. 2022). Many 
animals are capable of contributing to some or all of these ecosystem functions; 
however, certain groups are more ubiquitous and play a more significant role. Rodents 
are one such group. With 2590 species (Hamilton and Leslie 2021), rodents are the 
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most diverse and widespread order of mammals, and many of 
these species consume fungi. Rodents generally pass spores 
through their digestive systems quicker than do larger 
mammals and often have smaller home ranges/movement 
patterns (Danks 2012; Danks et al. 2020; Elliott et al. 
2020). However, given their incredible abundance and 
adaptability to populate a multitude of habitats (Wilson 
et al. 2017), rodents have been found to be important 
fungal dispersers in most terrestrial ecosystems that have 
been studied (Elliott et al. 2022). 

As a result of human modifications of ecosystems, many 
rodent species, particularly in Australia, have experienced 
population declines or extinctions (Smith and Quin 1996; 
Firth et al. 2010; Cove et al. 2017; Waller et al. 2017; 
Roycroft et al. 2021; Vernes et al. 2021). In some cases, 
introduced rodents have been shown to perform some of the 
fungal dispersal ecosystem services that were once provided 
by lost species (Vernes and McGrath 2009). In most systems, 
the full ecological effect of a loss in rodent diversity is not 
known in relation to its impacts on fungal dispersal. The 
significance of rodents as important fungal spore dispersers 
is gradually becoming more widely recognised, but it still 
remains incompletely studied. A recent global review 
indicated that more than 220 rodent species incorporate 
fungi into their diet (Elliott et al. 2022). Despite their 
ecological significance, threatened or extinct rodents rarely 
generate the same conservation attention as do larger, more 
charismatic animals. 

Rodents eat many types of fungi, but sequestrate species 
are a particularly important food source for them (Fogel 
and Trappe 1978; Maser et al. 2008; Elliott et al. 2020; 
Stephens and Rowe 2020; Stephens et al. 2020; Elliott and 
Vernes 2021). Sequestrate fungi produce fruiting bodies 
that are enclosed in a skin (called a peridium), and they 
often fruit below ground. Unlike non-sequestrate fungi, it is 
usually impossible for sequestrate taxa to forcibly discharge 
their spores into air currents (Thiers 1984). At maturity, 
these fungi usually produce strong aromas that enable their 
detection by rodents and other animals (Stephens et al. 
2020). After eating the fruiting bodies, these mycophagists 
subsequently disperse viable fungal spores through their 
scats (Vašutová et al. 2019; Elliott et al. 2022). Most 
sequestrate fungi also form mycorrhizal associations with 
plants and are essential to plant nutrient uptake (Tedersoo 
et al. 2010). Through these associations, mycophagous 
rodents are contributing to the health and diversity of 
fungal communities, the nutrient uptake of numerous plant 
species and the future food supplies of other vertebrates 
and invertebrates that also eat the fungi they are dispersing. 

In Australia, much of the focus on these ecological 
associations has been directed towards mycophagous 
marsupials (Nuske et al. 2017a); however, this study 
focuses on the importance of ecosystem services provided 
by rodents. We investigate the levels of mycophagy across 
three disjunct rodent communities and measure differences 

among species, geographic region and habitat type. We also 
provide the first evidence of fungal consumption among 
two additional species of rodents. 

Materials and methods

We selected study sites that had experienced low levels of recent 
disturbance, particularly in relation to land clearing. We also 
chose locations with relatively intact mammal communities 
that shared similar physiographic features despite the 
relatively large geographic distances between them. 

At all trapping sites, we used a combination of Elliott and 
cage traps and followed standard live-trapping protocols 
approved by the University of New England Animal Ethics 
Committee (see AEC18-065, AEC09-129 and AEC12-114). 
Traps were set in the late afternoon and baited with peanut 
butter and vanilla paste that was either mixed with rolled 
oats or spread on bread. Traps were left overnight, after 
which we began checking for captures just before daylight 
the following morning. Any animals in traps were 
transferred to clean cloth bags to be examined, identified, 
weighed and sexed. To ensure identification of re-captures, 
we clipped a small patch of fur off the flank of each animal 
so that we would be able to determine whether we caught 
that individual in the future. The animal was photographed 
(Fig. 1) and then released. Scats were collected from within 
the trap and either placed in 70% alcohol or a paper 
envelope. Traps were cleaned after each capture to ensure 
that there was no contamination between captures. We had 
a total of 5181 trap-nights during this study. 

Our southern-most site was on the New England 
Tablelands of north-eastern New South Wales, near Mount 
Hyland Nature Reserve (Fig. 2). Traps were at two sites, 
one within a 1 km radius of the central GPS point of 
30°10 009″S, 152°28 013″E and the other within 800 m of 
30°12 042″S, 152°26 005″E. Trapping at sites in New South 
Wales was conducted in June, August and November of 
2009, April 2010 and February 2012 and between July and 
August 2019. During the 2009–12 trapping season in New 
South Wales, there was a total of 3450 trap-nights using 
Elliott Type A traps; in 2019, there were 820 trap-nights using 
Elliott Type A traps, 112 trap-nights using Elliott Type B traps 
and 10 trap-nights using cage traps. Combining all trap types 
during both trapping seasons, we had a total of 4392 trap 
nights in north-eastern New South Wales. 

Two study sites were selected on the Atherton Tablelands 
of tropical Queensland (Fig. 2). The first site was located in 
Dinden National Park, and the second ran between Dinden 
and Davies Creek national parks. Traps were set at the first site 
along transects within 1.5 km of 17°06 042″S, 145°37 012″E 
and at the second site along transects within 2.5 km of 
17°00 054″S, 145°34 059″E. Trapping at these sites was 
conducted in early August 2020. We used a combination of 
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(a) 

(b) (c) 

(d ) (e) 
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Fig. 1. Images showing seven of the murid rodent species captured at our fieldsites
during the course of this study. (a) Rattus leucopus. (b) Rattus fuscipes. (c) Zyzomys argurus.
(d) Melomys burtoni. (e) Melomys capensis. (f ) Melomys cervinipes. (g) Uromys caudimaculatus.
Images © Todd F. Elliott.

Elliott A traps and cage traps. At the first site, there were 100 
trap-nights using Elliott A traps and 27 trap-nights using cage 
traps; at the second site, there were 136 trap-nights using 
Elliott A traps and 69 trap-nights using cage traps. We had 
a total of 332 trap-nights across both sites on the Atherton 
Tablelands. 

The third and most northern site was within Kutini-
Payamu (Iron Range) National Park on the northern end 

of the Cape York Peninsula (Fig. 2). Traps were set along 
transects within a 2.5 km radius of the central GPS 
point 12°42 049″S, 143°17 015″E. Trapping at this site was 
conducted in late August 2020. There were 350 trap-nights 
with Elliott A traps and 107 trap-nights with cage traps. We 
had a total of 457 trap-nights on Cape York. 

Scat samples were collected from each individual (multiple 
pellets were collected whenever possible and then mixed 
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Kutini-Payamu National Park 

Atherton Tablelands 

Mount Hyland 

Fig. 2. Map illustrating the locations of our trapping sites.

to ensure accurate representation). Samples were either 
permanent-mounted or wet-mounted on glass slides and 
analysed at ×400 magnification to determine presence 
and species richness of fungal spores. To avoid reporting 
incidental consumption of spores that happened to be in 
the environment, only spores found to occur frequently 
(a minimum of five times) in each sample were considered, 
and these were identified on the basis of recognition of 
standard microscopic characters. Any ambiguous identities 
were confirmed through comparison with spores of identified 
fungal fruiting body collections made by the authors in 
the same or similar habitats. Given the large geographic 
range and the number of fungi in the region that remain 
undescribed, we did not attempt to refine the fungal 
identification beyond family or genus level. We would also 
prefer to underestimate, rather than overestimate, the signifi-
cance of these animals as dispersers. Because we were focused 
on the diversity of fungi consumed by the rodents, we use 
some older nomenclatural concepts that help outline the 
diversity of taxa. For example, we mention the genera 
Thaxterogaster and Quadrispora. Taxonomic studies have 
shown that members of these historically sequestrate genera 
belong in Cortinarius (Gasparini 2014; Pastor et al. 2019; 
Nouhra et al. 2021). We agree with these taxonomic 
revisions, but in the context of this study, we mention these 
names in reference to spores that are members of the 
Cortinariaceae but have characters indicating that they are 
likely to belong to sequestrate taxa. The taxa that we list as 
Cortinarius could also be sequestrate, but we have no 
evidence to indicate their fruiting habits. 

All analyses were performed in R ver. 4.0.3 (R Core 
Team 2020). Sites were designated as being either tropical 
(Atherton Tablelands and Kutini-Payamu) or temperate 
(New England Tablelands), and forest type was classed as 
either wet sclerophyll or rainforest. However, because forest 
type and latitude are interlinked, we combined these into a 

single factor (‘habitat’) that described both the forest type 
and its latitudinal position. For samples containing fungus, 
ANOVAs using the ‘lmer’ function in the packages lme4 and 
lmerTest were used to compare taxon richness per sample 
among rodent species and habitat (tropical wet sclerophyll 
forest, temperature wet sclerophyll forest and tropical 
rainforest). Season (summer, autumn, winter and spring, with 
each equinox/solstice marking seasonal cut-points) and year 
of collection were random effects in the model. Post hoc 
contrasts (Tukey) were performed using the package 
emmeans. 

Multivariate analyses available in the package vegan 
(Oksanen et al. 2020) were used to explore trends in 
consumption of each individual fungal taxon among species, 
habitats and seasons. We first used the ‘outlier’ function to 
identify extreme outliers on the basis of nearest neighbour 
criterion (Wildi 2017); no outliers were identified. We then 
constructed a Bray–Curtis similarity matrix using presence– 
absence values for each of the 194 samples that contained 
fungi (rows) and the 29 taxa that occurred in the samples 
(columns) and applied non-metric multidimensional scaling 
(NMDS) to visualise and interpret these data. The NMDS 
was calculated using the function ‘metaMDS’ in the package 
vegan (Oksanen et al. 2020) within R (R Core Team 2020), 
using the Bray–Curtis dissimilarity matrix with weighted 
averages and a maximum number of 50 random starts. The 
function ‘envfit’ was then used to fit factors (species, season 
and habitat) to the ordination using 10 000 permutations, 
which showed associations between clusters of points 
and each factor. Data were plotted using the function 
‘ordellipse’ that created ellipses encompassing the standard 
deviation of points coded by species, season and habitat, 
and ‘ordspider’ that overlaid a ‘spider’ diagram connecting 
each point to its group centroid (Oksanen et al. 2020). 

To further visualise the differences in diet among 
species and habitats, we compiled a matrix of the percent-
age occurrence of fungal taxa in each mammal species × habitat 
combination, and then analysed these data by using 
hierarchical cluster based on Ward’s minimum-variance  
method on a distance matrix computed using Euclidean 
distances. We used only winter (June–August) samples for 
this analysis, because winter captures contained the greatest 
diversity of fungus, and tropical sites were sampled only in 
winter. The results of the cluster analysis were displayed as 
an unrooted tree by using the function ‘as.phylo’ within the 
package ‘Ape’. 

Results

Patterns in dietary diversity

Across all sites, we had a total of 253 rodent captures, 
representing 10 rodent species. At sites in northern New 
South Wales, we trapped fawn-footed melomys (Melomys 
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cervinipes), bush rat (Rattus fuscipes), swamp rat (Rattus 
lutreolus) and Hastings River mouse (Pseudomys oralis). 
At the Atherton Tableland sites, we trapped fawn-footed 
melomys, house mouse (Mus musculus), bush rat, giant 
white-tailed rat (Uromys caudimaculatus) and common rock 
rat (Zyzomys argurus). At the sites in Kutini-Payamu, we 
trapped grassland melomys (Melomys burtoni), Cape York 
melomys (Melomys capensis), Cape York rat (Rattus 
leucopus) and giant white-tailed rat. 

All species trapped in this study consumed fungi to varying 
degrees. We identified a total of 38 distinct spore types (taxa) 
across the sites (Table 1). Fungi were found to be an important 
dietary component; however, the levels of mycophagy and the 
taxa consumed depended on a combination of species of 
rodents and the habitat they occupied. Taxon richness per 
sample varied significantly with species (F8,176 = 8.7, 
P < 0.005) and habitat (F2,156 = 29.4, P < 0.0001). Species 
differences were driven by bush rats consuming signifi-
cantly more fungal taxa than fawn-footed melomys 
(P < 0.0001), Hastings River mice (P = 0.002), swamp rats 
(P = 0.02) and common rock rats (P = 0.005), and rock rats 
consuming significantly more taxa than giant white-tailed 
rats (P = 0.007). Samples from rodents inhabiting tropical 
rainforest sites also contained fewer fungi than those from 
either tropical wet sclerophyll forest or temperate wet 
sclerophyll forest (P < 0.0001), and what fungi they did eat 
were predominately Glomeromycota. When members of the 
Glomeromycota were present in scats, they were usually in 
large numbers, which led us to believe that this repre-
sented deliberate consumption of this group. There was no 
significant difference in the number of fungal taxa per 
sample from rodents inhabiting either tropical or temperate 
wet sclerophyll forest (P = 0.43), and at these sites, 
ectomycorrhizal fungi were the most common fungi in 
rodent diets. The majority of fungal taxa consumed belong 
to groups that form sequestrate and/or hypogeous fruiting 
morphologies. 

Non-metric multidimensional scaling (2D stress = 0.11) 
showed significant differences in dietary composition 
among the different species of rodents (r2 = 0.28; 
P < 0.001; Fig. 3a), but the strongest differences were with 
season (r2 = 0.42; P < 0.001; Fig. 3b), driven by winter 
diets being distinct from diets in other seasons (Fig. 3b), 
and habitat (r2 = 0.33; P < 0.001; Fig. 3c), where there 
were clear differences among diets in the three habitat 
types (Fig. 3c). 

Cluster analysis (which included only winter diets) 
identified several distinct clusters primarily on the basis of 
a combination of species and habitat (Fig. 4). The diet of 
bush rats, irrespective of habitat, clustered with temperate 
wet sclerophyll diets of Hastings River mice and fawn-
footed melomys. Tropical wet sclerophyll diets and tropical 
rainforest diets formed largely distinct clusters, with the 
exception of Cape York melomys from rainforest clustering 
with tropical sclerophyll diets of other rodents. 

Mycophagy by other mammals

In the process of conducting fieldwork, we also sampled seven 
additional mammals (all marsupials) as a result of accidental 
captures or finding roadkill. At the site in New South Wales, 
we sampled three brown antechinus (Antechinus stuartii; 
one individual consumed fungi), one long-nosed bandicoot 
(Perameles nasuta; consumed fungi), one red-legged 
pademelon (Thylogale stigmatica; consumed fungi) and one 
mountain brushtail possum (Trichosurus cunninghami; did 
not consume fungi). In northern Queensland, we sampled 
five northern bettongs (Bettongia tropica; all consumed 
fungi) and eight northern brown bandicoots (Isoodon 
macrourus; five consumed fungi). At the site on Cape York, 
we sampled one northern brown bandicoot (I. macrourus; 
consumed fungi) and one red-cheeked dunnart (Sminthopsis 
virginiae; did not consume fungi). We mention these incidental 
observations because they add to knowledge about mycophagy 
among Australian mammals and show that marsupials, 
alongside rodents, are mycophagists in these systems. 
Multiple previous studies have been conducted to investigate 
and/or review mycophagy among many of these taxa (e.g. 
Claridge and May 1994; Reddell et al. 1997; Vernes et al. 
2015; Nuske et al. 2017a, 2017b; Elliott et al. 2022). 

Discussion

Our study is the most comprehensive study to date of fungal 
consumption by rodents in Australia, both in terms of the 
number of rodent taxa studied and the geographical 
breadth covered by our sampling. The results showed that 
rodents are dispersing a great diversity of fungal spores in 
both tropical and temperate forest communities in eastern 
Australia, and that many different species of rodents are 
consumers of sequestrate fungi. For two of these, the 
grassland melomys and Cape York melomys, our 
work is the first to demonstrate fungal consumption. Some 
species such as the bush rat and fawn-footed melomys are 
widespread, and occurred at both our tropical and temperate 
study sites, in both wet sclerophyll forest and rainforest. These 
rodents demonstrated that fungi are eaten from temperate 
regions through to the tropics, but that consumption 
was strongly influenced by habitat type, with eucalpyt-
dominated forest returning much greater dietary richness of 
fungi than tropical rainforest. 

Our study provided a snapshot of fungal consumption 
during the height of the 2019 and 2020 fruiting season. 
Fungal consumption by mammals in eastern Australia has 
been shown by multiple studies to vary among seasons, and 
to peak in winter (Taylor 1992; Vernes et al. 2001, 2015; 
Vernes 2014; Elliott et al. 2020). Cluster analysis of winter 
samples demonstrated a strong clustering of murid species 
on the basis of the habitat type from which they came, with 
clusters being most closely tied to forest type, rather than 
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Table 1. Percentage occurrence of fungal taxa in mammal diets from the three major habitat types (calculated from scats that contained fungus).

Fungal taxon Habitat

Temperate wet sclerophyll Tropical rainforest Tropical wet sclerophyll

Mammal species

M. P. R. R. M. M. M. R. R. U. M. R. U. Z.
cervinipes oralis fuscipes lutreolus burtoni capensis cervinipes fuscipes leucopus caudimaculatus cervinipes fuscipes caudimaculatus argurus

(42) (10) (75) (17) (9) (26) (4) (19) (9) (9) (1) (4) (10) (13)

Agaricoid – – 1.4 – – – – – – – – – – –

Amylascus – – 8.5 – – – – – – – – – 20.0 8.3

Mesophelliaceae 2.8 12.5 9.9 – – – – – – – 33.3 75.0 70.0 50.0

Aroramyces 1 – – 1.4 – – – – – – – 33.3 – 20.0 41.7

Ascomycete – – 7.0 – – – – – – – – – – –

(Dicina-like)

Austrogautieria – – 5.6 – – – – – – – 16.7 50.0 30.0 –

Boletoid 11.1 – 2.8 – – – – – – – 50.0 75.0 90.0 8.3

Cortinarius 13.9 – 12.7 – – – – 5.9 – – – – – –

Cortinarius – – 2.8 – – – – – – – – – – –

(Quadrispora)

Cortinarius 33.3 12.5 16.9 – – 9.1 – – 16.7 – – – – –

(Thaxterogaster)

Descomyces – – – – – 9.1 – – – – – – – –

Cape York

Descomyces 16.7 62.5 43.7 72.7 100.0 – – – – – – – 10.0 –

Descomyces – – 1.4 – – – – – – – – – – –

stolatus

Descomyces – – 32.4 – – – – – – – – – – –

thick-walled

Descomyces 2 – – 12.7 18.2 – – – – – – – – 10.0 8.3
(skirt)

Descomyces 5 – 12.5 8.5 9.1 – – – – – – – – – –

(short warty)

Entoloma – – – – – – – 11.8 – – – – – –

Dingleya – – 28.2 – – – – – – – – – – –

Elaphomyces – – 9.9 – – – – – – – – – – 25.0

Glomeromycota 69.4 – 9.9 9.1 – 72.7 100.0 94.1 100.0 – 66.7 100.0 40.0 25.0

(Continued on next page)

531

www.publish.csiro.au/wr


T. F. Elliott et al. Wildlife Research

Table 1. (Continued).

Fungal taxon Habitat

Temperate wet sclerophyll Tropical rainforest Tropical wet sclerophyll

Mammal species

M. P. R. R. M. M. M. R. R. U. M. R. U. Z.
cervinipes oralis fuscipes lutreolus burtoni capensis cervinipes fuscipes leucopus caudimaculatus cervinipes fuscipes caudimaculatus argurus

(42) (10) (75) (17) (9) (26) (4) (19) (9) (9) (1) (4) (10) (13)

Hydnangium 5.6 25.0 8.5 18.2 – – – – – – – – 10.0 –

Hysterangium 44.4 – 43.7 – – – – – – – 66.7 50.0 90.0 83.3

Labyrinthomyces – – 4.2 – – – – 11.8 – – 16.7 50.0 30.0 –

Leucogaster – – 2.8 – – – – – – – – – – –

Octaviania – – 9.9 – – – – – – – – – – –

Rossbeevera 19.4 – 15.5 18.2 – 9.1 – – – – – 25.0 – –

Russulaceae 8.3 37.5 74.6 54.5 – 18.2 – 5.9 – – 16.7 25.0 50.0 –

Sclerogaster 2.8 – 1.4 – – – – – – – – 25.0 – –

Number of 11 6 26 7 1 5 1 5 2 0 8 9 12 8
fungal taxa

% Occurrence 85.7 80.0 94.7 64.7 11.1 42.3 100.0 89.5 66.7 0.0 85.7 100.0 100.0 92.3
of fungus

Total taxa in diets, and percentage occurrence of fungus in all scats are also shown. Numbers in parentheses indicates total number of samples analysed for each species in each habitat.

532



M. cervinipes 

M. cervinipes 

P. oralis 

R. fuscipes 

R. fuscipes
M. cervinipes 

Tropical rainforest 

www.publish.csiro.au/wr Wildlife Research

U. caudimaculatus(a) 
M. capensis
M. cervinipes 
P. oralis 

N
M

D
S2

 
−1

0
1

2 
−2

−1
0

1
2 

−1
0 

1 R. fuscipes Z. argurus
R. leucopus 
R. lutreolus R. leucopus M. capensis
U. caudimaculatus 
Z. argurus 

−4 −3 −2 −1 0 1 2 
NMDS1 

(b) 
Autumn 
Spring Tropical wet sclerophyll 
Summer Temperate wet sclerophyll 
Winter 
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mycophagists, with several studies showing that they are 
probably among the most mycophagous of Australian 
rodents (Vernes and Dunn 2009; Nuske et al. 2017b). 
Because of the great diversity of taxa in their diet irrespec-
tive of habitat type, they clustered with rodents from the 
forest type that also collectively returned the greatest 
fungal diversity. Second, this observation is likely to indicate 
that both R. fuscipes and M. capensis had a relatively higher 
fungal consumption than did other rainforest rodents, and 
probably indicates that they foraged more widely than the 
other rainforest species, extending their movements into 
adjacent sclerophyll forest dominated by ectomycorrhizal 
taxa. Vernes and Dunn (2009) showed that in north-eastern 
New South Wales, R. fuscipes moved across rainforest 
boundaries and was spreading fungal spores through its 
mycophagous feeding habits. 

Although difficult to prove within the context of this study, 
seasonal changes in fungal consumption are likely to be a 
reflection of food availability rather than preference. For 
example, the mammal community in Kutini-Payamu was 
the least mycophagous within our study. These differences 
could be due to seasonality, but we suspect that habitat 
is likely to be a more significant factor. We believe this 
in part because a long-term study of the long-nosed 
echymipera (Echymipera rufescens) in Kutini-Payamu 
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Fig. 3. Non-metric multidimensional scaling (NMDS) plot of
Bray–Curtis dissimilarity coefficients for each sample of a rodent
diet. Ellipses encompass the standard deviation of points coded by
(a) rodent species, (b) season, or (c) habitat. Straight lines connect
each point to its group centroid.

species, or geographical location (i.e. temperate or tropical). 
However, there were some exceptions. Bush rats from tropical 
rainforest, tropical wet sclerophyll forest, and temperate wet 
sclerophyll forest clustered with other rodents from temperate 
wet sclerophyll forest, whereas the Cape York melomys 
(M. capensis) from tropical rainforest clustered with other 
rodents from tropical wet sclerophyll forest. These results 
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(Shevill 1999; Shevill and Johnson 2007) showed that fungal 
consumption by this species tended to peak in September. 

There is substantial experimental data indicating that 
mycorrhizal fungal spores survive transit through the 
digestive system of various Australian murid rodents 
(McGee and Baczocha 1994; Reddell et al. 1997), as well as 
rodents in other regions of the world (Trappe and Maser 
1976; Colgan and Claridge 2002; Caldwell et al. 2005; Ori 
et al. 2018; Elliott et al. 2022). We found no evidence in 
the literature that the digestive system of rodents or any 
other mammal prevents the germination of fungal spores. 
On the basis of our microscopic analysis of spores, we saw 
no evidence of spore degradation that would negatively 
affect spore germination rates. Three of the species we 
include in this study, fawn-footed melomys, bush rat and 
giant white-tailed rat, have been experimentally shown to 
pass viable mycorrhizal spores (Reddell et al. 1997) and it 
is highly likely that the other seven species share this ability. 

The movement pattern and passage rate of an animal 
directly affect its spore dispersal potential. These factors 
inevitably vary among individuals and species, but larger 
mammals generally have greater movement patterns, larger 
home ranges and slower passage rates compared with 
smaller mammals (Swihart et al. 1988; Danks 2012). The 
giant white-tailed rat (U. caudimaculatus) was the largest 
species in our study; although we are unaware of any 
detailed studies examining the size of its home range, 
Wellesley-Whitehouse (1983) reported that an individual 
travelled 500 m overnight between trap sites. Further study 
of more individuals in more areas will likely show a greater 
range in movement patterns. The mean retention time of 
fungal spores for this species is 48.4 h, and some spores 
linger as long as 120 h in the digestive system (Comport 
and Hume 1998). Giant white-tailed rats have the potential 
to disperse fungal spores at least 500 m in a night, and 
depending on maximum retention times and movement 
patterns, they could likely disperse spores much farther 
over the 120 h window. More data are needed to accurately 
estimate maximum dispersal potential. Movement patterns 
and passage rates of the other rodent species in our study 
vary, but they are generally poorly studied. Smaller rodents 
would typically have faster passage rates, which would be 
likely to translate into smaller potential dispersal areas. 
However, the ecological importance of small versus large 
dispersal distances may balance out if estimates account for 
species abundance and distribution. The Hastings River 
mouse (P. oralis) was estimated to retain fungal spores up 
to 95–100 h after ingestion and to move spores as far as 
1256 m (Elliott et al. 2020). It is important to remember 
that this does not mean 1256 m from the point of ingestion, 
but is within the species’ home range. We suspect that 
given their slightly smaller size, the three Rattus species in 
this study would have a dispersal potential similar to but 
slightly smaller than what was calculated for P. oralis. The 
other five even smaller species we examined would be 

likely to have a dispersal potential smaller than that of the 
Rattus spp. More data on passage rates and movement 
patterns are needed to reliably estimate or model the 
dispersal potential of these rodents and their impacts on 
mycorrhizal fungal distribution. 

Fungal spore dispersal distance has been modelled only for 
swamp wallabies (Wallabia bicolor); despite their much larger 
size, this species’ maximum spore dispersal distance was 
estimated to be 1265 m from the point of ingestion (Danks 
et al. 2020). Regardless of the specifics of how far rodents 
are dispersing fungal spores, it is apparent that they are 
regularly moving mycorrhizal fungi at least hundreds of 
metres from where they are ingested. This is ecologically 
significant because many of the mycorrhizal fungi they eat 
form sequestrate fruiting bodies that are enclosed in a skin 
and often fruit below the soil surface (Maser et al. 2008). 
This fruiting habit makes the fungi reliant on animals for 
spore dispersal, and having their spores moved even a few 
metres from where they were fruiting is significant for their 
dispersal and the associated plant communities. 

Our study highlights the importance of murid rodents 
in maintaining healthy mycorrhizal fungal communities 
through the consumption of a diversity of fungal taxa and 
subsequent dispersal of these fungi through their scats. 
With extinctions and/or losses in the abundance of many 
mycophagous marsupial communities (Nuske et al. 2017a), 
it is important to understand the key ecosystem services 
provided by Australian rodent communities. We urge 
researchers working with murids and other rodents in 
Australia and beyond to direct more attention toward 
understanding the fungal components of these animals’ 
diets. In most regions of the world, only a handful of rodent 
species have been thoroughly studied and are recognised as 
being highly important mycophagous species and spore 
dispersers (Fogel and Trappe 1978; Elliott et al. 2022). 
There are hundreds of other rodent species that are likely 
to be equally important but remain unrecognised as spore 
dispersers. We hope this study of murid rodent mycophagy 
will stimulate more research interest into rodent mycophagy 
around the world. 
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