Supplementary Material

The Time Local Convex Hull (T-LoCoH) method as a tool for assessing responses of fauna to habitat restoration: a case study using the perentie (*Varanus giganteus*: Reptilia: Varanidae)

Sophie L. Cross^{A,F}, Sean Tomlinson^{A,B}, Michael D. Craig^{C,D} and Philip W. Bateman^E

^AARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia.

^BKings Park Science, Department of Biodiversity, Conservation and Attractions, Kattij Close, Kings Park, WA 6005, Australia.

^CSchool of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.

^DSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

^EBehavioural Ecology Lab., School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia.

 ${}^F Corresponding \ author. \ Email: sophie.cross@postgrad.curtin.edu.au$

b)

Fig. S1: The patterns for activity and temperature of a sub-adult *V. giganteus* in a) restoration vegetation, and b) reference vegetation. Activity levels increase with increasing temperatures c), with activity tending to be highest around 35°C, as is reported across the literature.