Accessory Publication: Functional Plant Biology, 2010, 37(5), 448–454.

Accessory Publication

Table S1. Significant and suggestive MTA for single-dose markers inherited from Q165, the male parent of the mapping population Direction, scale (r^2) and significance of each association is shown. Single marker regression was performed on trait data from 168 segregating F₁ siblings grown under high or low N supply in glasshouse conditions. MTA are significant at *P < 0.05, **P < 0.01 and ***P < 0.005

Marker ^A	HG/LG ^B	Shoot dr	y weight	Root dr	y weight	Total s	hoot N	iN	IUE	Leaf solu	ble protein	Leaf GS	activity
		High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
Aggcac12	1/17	-6***		-3*				-4*					
Acacat25	1/19									-6***		-6***	
M179b	1/42										+7***		-3*
Acccat34	1/47						+5**				-7***		+3*
Accetc19	1/50									-6***		-6***	
Acgcac16	1/81				+5***								
M36d	1/114					-4*					+5**		-6***
Acccat38	2/8									+4*		+5**	+6***
Aaccag13	2/11									-5**		-6***	
M12f	2/12a	+6***	+4*	+7***		+4*			+3*				
Aaccat4	2/14												-6***
MM28b	2/16	-6***				-6***							
Aggcag27	2/22												+6***
Aggcac34	2/38	-12***		-5**		-11***		-7***	-5**				
Acgctt27	2/38	-5**	-4*			-3*		-4*	-12***		+5**		
Acgcag10	3/3	-3*		-6***									
Acccat12	3/4									-8***		-8***	
Accetc1	3/7	-8***	-6***	-5**	-6***	-4*	-5**	-5**					+4*
Aggcac17	3/11		-8***		-8***	-3*	_9***						
Agccat20	3/15		+4*		+5***				+4*				
Aagcaa19	3/41	-4*	-6***		-3*	-3*	-6***	-5**	-4*				
Actcat8	3/41										+8***		
Acceta31	3/41								+9***				

Acccac22	3/69					+6***					
Agcctc24	4/47	-7***		-5**	-4*	-3*		-5**			
Acgcta30	4/48							-6***		+4*	
M34a	5/57		+4*		+5**		+6***				
K091	6/82	+4*				+6***	+4*				-4*
Acceta14	u/u ^C		+4*		+5***		+4*				
La1814d	u/u							-4*			+8***
M32i	u/u		+4*				+7***		+3*		
Agcctc3y	u/u	+4*		+3*		+6***	+5*				
M286h	u/u		-3*	-3*	-7***						

^AThe most significant marker of the group of markers associated with the trait.

^BThe homology and linkage group from Aitken *et al.* (2005).

^CUnknown location.

Table S2. Significant and suggestive MTA for single-dose markers inherited from IJ76-514, the female parent of the mapping population Direction, scale (r^2) and significance of each association is shown. Single marker regression was performed on trait data from 168 segregating F_1 siblings grown under high or low N supply in glasshouse conditions. MTA are significant at *P < 0.05, **P < 0.01 and ***P < 0.005

C	\mathcal{C}		11 2	\mathcal{C}				C					
Marker ^A	HG/LG ^B	Shoot dr	y weight	Root d	ry weight	Total	shoot N	iN	UE	Leaf solu	ble protein	Leaf GS	activity
		High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
Single-dose r	narkers												
aggctg21	1/4	+3*	+4*	+4*	+7***								
aagctc9	1/15	-6***		-5**		-6***							
aagctc55	2/10								-6***				
actctg27	2/10	+5**	+7***		+4*	+4*	+4*	+4*	+4*				
agcctg31	2/18							-6***					
acgctt24	2/22						-7***					+3*	+3*
acccac1	2/23	-5**				-6***	-5*		-3*				
m1b	2/23								-7***				
m42c	3a/3								-7***				
m1068f	3a/8	+6***		+3*	+4*			+9***	+5*				
acccta22	3a/11		-6***			-3*	-9***						
acccag32	3a/12							+6***				-3*	-3*
aagctc61	4-b/4	+19***	+14***	+9**	+16***	+9*	+8*						
acgcag2	5/6										+7***	-5**	+7***
m16e	7/1	-4*	-4*		-7***	-3*	-4*			+3*			
aggcta28	8/1								-6***				
m1527c	u/u ^C	-4*				-5*				+6***			
aagctc16	u/8		-8***		-4*		-8***						
aggctg23	u/9	-7***		-3*		-6**							
Multi-dose m	arkers												
acccat41	2/18	-3*						-6***					
acacat12	3a/6			-5***									
acccta5	4-b/4	+6***		+3*		+4*							
agccat27	u/8	-3*	-10***		-6***		-12***		-4*				
aggctg33	u/11	-4*	-4*			-4*		-3*	-8***				
aggctc36	u/13	-4*				-6***	-3*	-5*					
m66a	u/u	-4*	-6***		-4*	-3*	-3*						
aagcaa27	u/u										+6***	-3*	+6***
m32b	u/u		+3*					+5*		-4*		-6***	-6***
la12322	u/u											-6***	-6***

la12326	u/u								+6***		-3*		-3*
aagctc33	u/u	-4**	-4*	-4*	-5**	-8***	-4*		-4*				
aacctc26	u/u	+7***		+4*		+7***		+3*					
actctg2	u/u		+3*		+3*				+6***		-4*		-4*
m37e	u/u							+10***					
m1493f	u/u		+4*						+11***				
m334c	u/u	+3*	+5***	+3*	+5***		+6***						
acacat2	u/u				+6***						-5**		-5**
m74a	u/u									+7***		+3*	+3*
m548	u/u										-7***		-7***

AThe most significant marker of the group of markers associated with the trait.

^BThe homology and linkage group from Aitken *et al.* (2005).

^CUnknown location.

Table S3. Significant and suggestive associations for markers inherited from both parents of the mapping population (those displaying 3:1 segregation)

Direction, scale (r^2) and significance of each association is shown. Single marker regression was performed on trait data from 168 segregating F_1 siblings grown under high or low N supply in glasshouse conditions. MTA are significant at *P < 0.05, **P < 0.01 and ***P < 0.005

Marker ^A	HG/LG ^B	Shoot d	ry weight	Root di	ry weight	Total s	shoot N	iN	UE	Leaf solubl	le protein	Leaf GS	activity
		High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
x1527e	8/2		+6***	+3*	+5**	+3*	+4*						
x1527b	8/3									+10***			
xgccta31	u/u^c	+5**		+6***	+3*					+3*			
xagctc60	u/u	-4*				-6***							
xagcta39	u/u	+3*	+10***	+5**	+13***		+6***	+3*	+4*	-3*			
xagcta46	u/u									+6***			
xcgcta37	u/u		-4*						-7***		+5**		+5**
xggcag20	u/u	-4*		-5***	-3*	-5**							
xgccat46	u/u	-3*	-4*			-6***	-4*						
x1527f	u/u								+7***				
xcacat23	u/u									+8***			
xcgctt28	u/u	+5**		+7***		+5**							
xcgctt34	u/u									-6***		-3*	-3*
xgccag2	u/u					+7***							
xgccag19	u/u	+8***				+5**	+3*	+5**					
xAB0414	u/u			+3*						+4*	-3*	+6***	-3*
xM24a	u/u							-6***					

^AThe most significant marker of the group of markers associated with the trait.

^BThe homology and linkage group from Aitken *et al.* (2005).

^CUnknown location.

Reference

Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. *Theoretical and Applied Genetics* **110**, 789–801. doi:10.1007/s00122-004-1813-7