Supplementary Material: Functional Plant Biology, 2013, 40(8–9), 968–976.

Supplementary Material

The importance of iron supply during repetitive harvesting of Aster tripolium

Yvonne Ventura^A, Malika Myrzabayeva^B, Zerekbay Alikulov^B, Shabtai Cohen^C, Zion Shemer^C and Moshe Sagi^{A,D}

^AAlbert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel.

^BL.N Gumilyov Eurasian National University, Department of Biology and Biotechnology, 5 Munaitpasov St., 473021, Astana, Kazakhstan.

^CRamat Negev Desert Agro-Research Station, Halutza 85515, Israel.

^DCorresponding author. Email: gizi@bgu.ac.il

Fig. S1. Determinants of leaf marketability: A–B not marketable, because of physical damage, C–D not marketable, because of yellow leaf color, E–F marketable leaves.

Fig. S2. The response of *Aster tripolium* cultivated on sand dune soil with saline irrigation (80 mM NaCl) to iron chelated forms (A) *A. tripolium* plots marked with white arrows were supplied with iron chelated as EDTA and treated with iron chelated as EDDHA 7 d before documentation. Yellow arrows mark the control plots, which were supplied with iron chelated as EDTA. (B) Control leaves, (C) leaves after iron-EDDHA treatment.