Supplementary Material ## Soil water availability influences the temperature response of photosynthesis and respiration in a grass and a woody shrub Tony Joseph^A, David Whitehead^B and Matthew H. Turnbull^{A,C} ^ASchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand. ^CCorresponding author. Email: matthew.turnbull@canterbury.ac.nz **Fig. S1.** Changes in the rate of soil water content (%) for brown top grass (open circles) and kānuka (closed circles) with time, after imposing the drying event. ^BLandcare Research, PO Box 69040, Lincoln 7640, New Zealand. **Fig. S2.** Relationship between soil water content and (*a*) stomatal conductance ($g_{s,20}$) of brown top grass ($g_{s,20} = -4 \times 10^{-5}$ θ² + 0.005 θ - 0.018 ($r^2 = 0.99$)) and kānuka (ns) and (*b*) intrinsic water use efficiency ($A_{sat,20}$: $g_{s,20}$) of the grass ($A_{sat,20}$: $g_{s,20} = -4.517$ θ + 243.6, ($r^2 = 0.99$)) and kānuka (ns). Dependence of (*c*) light saturated net CO₂ assimilation rate ($A_{sat,20}$) of the grass ($A_{sat,20} = -1165$ $g_{s,20}^2 + 230.1$ $g_{s,20} = 0.587$, ($r^2 = 0.99$)) and kānuka (ns) and (*d*) intrinsic water use efficiency ($A_{sat,20}$: $g_{s,20}$ = $g_{s,20} = -1048$ $g_{$ Table S1. Parameters obtained by fitting the data to the mixed effect models for $V_{\rm cmax}$ and $J_{\rm max}$, and respiration response data using leaf temperature and soil water content as variables for brown top grass and kānuka | Plant type | Variables | $V_{\rm cmax,20}$ (µmol m ⁻² s ⁻¹) | H _{av} (kJ mol ⁻¹) | θ _c (%) | P-value | |------------|---|---|---|--------------------|-----------------| | Grass | Leaf temperature and soil water content | 39.72 | 53.9 | 17.0 | <0.001 | | Kānuka | Leaf temperature and soil water content | 35.31 | 49.4 | 23.6 | <0.001 | | | | $J_{ m max,20}~({ m \mu mol~m^{-2}~s^-}$ | H_{aj} (kJ mol ⁻¹) | θ _c (%) | <i>P</i> -value | | Grass | Leaf temperature and soil water content | 97.72 | 28.8 | 18.0 | <0.001 | | Kānuka | Leaf temperature and soil water content | 78.67 | 28.1 | 23.6 | <0.001 | | | | $R_{10} \; (\mu \text{mol m}^{-2} \; \text{s}^{-1})$ | E_0 (kJ mol ⁻¹) | θ _c (%) | <i>P</i> -value | | Grass | Leaf temperature | 0.29 | 38.2 | | <0.001 | | Kānuka | Leaf temperature and soil water content | 0.62 | 43.5 | 15 | < 0.001 |