Supplementary Material

Soil water availability influences the temperature response of photosynthesis and respiration in a grass and a woody shrub

Tony Joseph^A, David Whitehead^B and Matthew H. Turnbull^{A,C}

^ASchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.

^CCorresponding author. Email: matthew.turnbull@canterbury.ac.nz

Fig. S1. Changes in the rate of soil water content (%) for brown top grass (open circles) and kānuka (closed circles) with time, after imposing the drying event.

^BLandcare Research, PO Box 69040, Lincoln 7640, New Zealand.

Fig. S2. Relationship between soil water content and (*a*) stomatal conductance ($g_{s,20}$) of brown top grass ($g_{s,20} = -4 \times 10^{-5}$ θ² + 0.005 θ - 0.018 ($r^2 = 0.99$)) and kānuka (ns) and (*b*) intrinsic water use efficiency ($A_{sat,20}$: $g_{s,20}$) of the grass ($A_{sat,20}$: $g_{s,20} = -4.517$ θ + 243.6, ($r^2 = 0.99$)) and kānuka (ns). Dependence of (*c*) light saturated net CO₂ assimilation rate ($A_{sat,20}$) of the grass ($A_{sat,20} = -1165$ $g_{s,20}^2 + 230.1$ $g_{s,20} = 0.587$, ($r^2 = 0.99$)) and kānuka (ns) and (*d*) intrinsic water use efficiency ($A_{sat,20}$: $g_{s,20}$ = $g_{s,20} = -1048$ $g_{$

Table S1. Parameters obtained by fitting the data to the mixed effect models for $V_{\rm cmax}$ and $J_{\rm max}$, and respiration response data using leaf temperature and soil water content as variables for brown top grass and kānuka

Plant type	Variables	$V_{\rm cmax,20}$ (µmol m ⁻² s ⁻¹)	H _{av} (kJ mol ⁻¹)	θ _c (%)	P-value
Grass	Leaf temperature and soil water content	39.72	53.9	17.0	<0.001
Kānuka	Leaf temperature and soil water content	35.31	49.4	23.6	<0.001
		$J_{ m max,20}~({ m \mu mol~m^{-2}~s^-}$	H_{aj} (kJ mol ⁻¹)	θ _c (%)	<i>P</i> -value
Grass	Leaf temperature and soil water content	97.72	28.8	18.0	<0.001
Kānuka	Leaf temperature and soil water content	78.67	28.1	23.6	<0.001
		$R_{10} \; (\mu \text{mol m}^{-2} \; \text{s}^{-1})$	E_0 (kJ mol ⁻¹)	θ _c (%)	<i>P</i> -value
Grass	Leaf temperature	0.29	38.2		<0.001
Kānuka	Leaf temperature and soil water content	0.62	43.5	15	< 0.001