10.1071/FP14048_AC © CSIRO 2014 Supplementary Material: *Functional Plant Biology*, 2014, 41(9), 893–913.

Supplementary Material

Crop yield components – photoassimilate supply- or utilisation limited-organ development?

John W. Patrick^{A,C} and Kim Colyvas^B

^ASchool of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.

^BSchool of Mathematics and Physics, The University of Newcastle, Callaghan, NSW 2308, Australia.

^CCorresponding author. Email: john.patrick@newcastle.edu.au

Fig. S1

Fig. S1. Comparison of yield responses of (*a*) soybean and (*b*) potato to eCO_2 between singly potted and spaced plants (solid circles; solid line) with those arranged in mini-crop configurations or raised under field conditions (open circles; dashed line). The fitted relationships were obtained by generalized additive mixed modelling. After adjusting for the effect of photoassimilate availablility, there was no significant difference between the mean yields for these two arrangements for plant growth (*P* = 0.67 and *P* = 0.32 for soybean and potato, respectively).

Fig. S2. Responses of yield components of wheat to eCO_2 -driven increases photoassimilate availability fitted using generalized additive modelling. Relationship between percent increase in whole plant or shoot biomass of plants and the corresponding percent increase in (*a*) yield, (*b*) total grain number, (*c*) fertile tiller number and (*d*) grain number per inflorescence. All yield components had a significant association with photo-assimilate availability (*P* < 0.0001) except grain number per inflorescence (*P* = 0.13). A grey-shaded area delimits the 95% confidence limit around each fitted relationship. Outliers excluded from analysis were more than 3.7 residual standard deviations from the fitted line and are identified as crosses.

Reference	eCO ₂ delivery system	Cultivar(s) and plant growth conditions	Data selected	Data excluded	Reasons for data exclusion
Gifford (1977)	Growth cabinets in temperature-controlled glasshouses ACO_2 : 280 -300 ppm eCO_2 : 480 – 500 ppm	Norin (spring wheat) Potted plants at mini-crop spacing Temperature: 21/16°C Solar radiation: Summer: 12–20 MJ m ⁻² day ⁻¹ Winter: 4–8 MJ m ⁻² day ⁻¹	High-light growth conditions yield data	Low-light growth conditions	Low-light conditions – several yield components not recorded.
Havelka et al. (1984)	Open-top chambers ACO ₂ : 340 ppm eCO ₂ : 1200 ppm	Arthur (winter wheat) Field sown, Delaware USA	1979 and 1980 growth seasons eCO ₂ yield data	N/A	
Mitchell <i>et al.</i> (1993)	Growth chambers in a glasshouse ACO ₂ : 361 ppm eCO ₂ : 692 ppm	Mercia (winter wheat) Potted plants at mini-crop spacing. Temperature: ambient or Ambient + 4°C. Low N: 5 mM nitrate High N: 48 mM nitrate)	eCO ₂ yield responses at: Low N: Ambient + 4°C High N: Ambient; Ambient + 4°C	Low N: ambient	Yield reduced under eCO ₂ .
Weigel et al. (1994)	Open-top chambers in a glasshouse ACO ₂ : 384 ppm eCO ₂ : 471, 551, 624, 718 ppm	Star and Turbo (spring wheat) Potted plants at mini-crop spacing. Temperature: 18°C PAR: 23.1 mol m ⁻² day ⁻¹	Yield data sets at all eCO ₂ levels	N/A	
Rawson (1995)	Temperature gradient tunnels ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Hartog and Late Hartog Field conditions at two sites: Black Mountain and Ginnindera Exp Station ACT Australia Temperature: summer (35/16°C); winter (23/8°C). Solar radiation: 10–20 MJ m ⁻² dav ⁻¹	All yield data sets	N/A	

Table S1.Summary of data sets selected from the literature on impacts of elevated carbon dioxide on key components of wheat
yield that are accompanied by records of whole plant or shoot biomass changes

Fangmeier et al. (1996)	Open-top chambers ACO ₂ : 360 ppm	Minaret (spring wheat) Potted plants at mini-crop	Yield responses at: low and high N	Ozone treatments	Phytotoxicity
	eCO ₂ : 520, 680 ppm	spacing Temperature: $15-30^{\circ}$ C Low N: 150 kg ha^{-1} High N: 270 kg ha^{-1}	Two eCO_2 levels		
Manderscheid and Weigel (1997)	Open-top chamber ACO ₂ : 379 ppm eCO ₂ : 689 ppm	German cultivars: Heines Kolben (1890); Janetzkis Früher (1914); Rimpaus Langensteiner (1943); Adler (1965); Turbo (1979); Nandu (1988) Potted plants at mini-crop spacing Temperature: 19°C PAR: 25.2 mol m ⁻² day ⁻¹	All yield data sets		
McKee et al. (1997)	Growth chambers ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Wembley (spring wheat) Potted plants Temperature: 24/18°C PAR: 645 µmol m ⁻² s ⁻¹	Yield data for eCO ₂ treatments alone	Ozone treatments	Phytotoxicity
Mulholland <i>et al.</i> (1997)	Open top chambers ACO ₂ : 379 ppm eCO_2 : 550, 683 ppm	Minaret (spring wheat) Field grown, Nottingham, UK Temperature: 14–21°C Solar radiation: 14 MJ m ⁻² day ⁻¹	Yield data for CO ₂ treatments alone	Ozone treatments	Phytotoxicity
Sharma-Natu <i>et al.</i> (1997)	Open-top chambers ACO ₂ : 379 ppm eCO ₂ : 650 ppm	Kalyansona and Kundara Field grown	All yield data sets		
Hakala (1998)	Open-top chambers in a temperature-controlled greenhouse. ACO ₂ : 379 ppm eCO ₂ : 700 ppm	Polkka (spring wheat) Field grown; southern Finland Temperature: ambient (min 7° C; max 24°C) and ambient + 3°C. Solar radiation: 6–7 MJ m ⁻² day ⁻¹ .	All yield data sets		

Van Oijen <i>et al.</i> (1999)	Open-top chambers ACO ₂ : 373 ppm eCO ₂ : 718 (1995), 753 (1996) ppm	Minaret Field grown, Wageningen, Netherlands Temperature: 15°C Solar radiation: 16–19 MJ m ⁻² day ⁻¹ Dingxi 24 (spring wheat)	All yield data sets		CO. differential too
Li ei ul. (2007)	ACO ₂ : 360 ppm eCO ₂ : 410 ppm	Field grown, Dingxi, China NH ₄ NO ₃ : 0, 250, 500 kg m ^{-2}			small.
Ziska (2008)	Open-top chambers ACO ₂ : 395 ppm eCO ₂ : 665 ppm	Marquis and Oxen (spring wheat) Field grown, Beltsville, USA Two plant densities	Yield responses at eCO2 for: Marquis: and Oxen at low planting densisties in 2005, 2006. 2007 seasons	Marquis: 2005; 2007 seasons	Marquis 2005: yield response statistical outlier. Marquis 2007: tiller and seed number responses statistical outliers.
Tausz-Posch <i>et al.</i> (2012)	FACE ACO ₂ : 395 ppm eCO ₂ : 550 ppm	Drysdale and Hartog Field grown, Horsham, Victoria, Australia Temperature: 11–14°C	All yield data sets		
Bourgault <i>et al.</i> (2013)	Growth chambers and glasshouses ACO ₂ : 420 ppm eCO ₂ : 700 ppm	20 cultivars Potted plants at mini-crop spacing PAR: 600 µmol m ⁻² s ⁻¹	Cultivars combined yield data set		
De Oliveira <i>et al.</i> (2013)	Tunnel houses ACO ₂ : 385 ppm eCO ₂ : 700 ppm	Line 38–19 and Janz Field grown Temperature: 10–15°C rising to 20–25°C Ambient, ambient + 2°C, ambient + 4°C, ambient + 6°C PAR (max): 948 µmol m ⁻² s ⁻¹	Yield responses to eCO_2 at: ACO_2 + ambient °C eCO_2 and ambient + 2°C,	eCO ₂ and ambient + 4 and 6°C	Treatments depressed yield below the ACO ₂ control

Table S2.Summary of data sets selected from the literature on impacts of elevated carbon dioxide on key components of rice
yield that are accompanied by records of whole plant or shoot biomass changes

Reference	eCO ₂ delivery system	Cultivar and plant growth conditions	Data selected	Data excluded	Reasons for data exclusion
Khan and Madsen (1986)	Growth cabinets ACO ₂ : 330 ppm eCO ₂ : 600, 900 ppm	IR-20 Spaced potted plants Temperature: 22/18 to 35/28°C PAR: 133 μ mol m ⁻² s ⁻¹	All yield data sets		
Baker <i>et al.</i> (1990)	Sun-lit growth chambers ACO ₂ : 330 ppm eCO ₂ : 500, 660, 900 ppm	IR-30 Paddy culture	All eCO ₂ yield data sets		
Baker <i>et al.</i> (1992a)	Outdoor, sun-lit growth chambers. ACO ₂ : 330 ppm eCO ₂ : 660 ppm	IR-30 Paddy culture Temperature: 25/18; 28/21; 31/24; 34/27°C	eCO ₂ yield responses at 25/18, 28/21°C 14/10 h photoperiod	eCO2 responses at 31/24, 34/27°C	Yield less than ACO ₂ controls
Baker et al. (1992b)	Sun-lit growth chambers ACO ₂ : 330 ppm eCO ₂ : 660 ppm	IR-30 Paddy culture Temperature: 28/21, 34/27, 40/33°C	eCO ₂ yield responses to eCO ₂ at 28/21, 34/27°C	eCO ₂ responses at 40/33°C	Plant failure under these conditions.
Bugbee et al. (1994)	Growth chambers ACO ₂ : 340 ppm eCO ₂ : 680 ppm	29-Lu-1 and Ai-Nan-Tsao Spaced potted plants Temperature: 29/22 or 35/28°C PAR: 600 or 1200 µmol m ⁻² s ⁻¹	eCO ₂ yield responses at two PARs and a temperature of 29/22°C	eCO ₂ responses at 35/28°C	Pollination compromised at higher temperature.
Seneweera <i>et al.</i> (1994)	Growth chamber ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Jarrah Spaced potted plants CaHPO ₄ : 0, 30, 60, 120, 240, 480 mg kg ⁻¹ Temperature: $28/21^{\circ}$ C PAR: 1200 µmol m ⁻² s ⁻¹	eCO ₂ yield responses at 120, 240, 480 mg kg ⁻¹ P	eCO ₂ responses at 0, 30, 60 mg kg ⁻¹ P	Plants P deficient

de Costa et al .(2003)	Open-top chambers	BG-300	All yield data sets		
	ACO_2 : 370 ppm	Field grown, January-March	<u> </u>		
	eCO_2 : 570 ppm	(rainy season) or May –			
		August in sub-humid zone of			
		Sri Lanka			
		Temperature: 28, 32°C			
		Solar radiation: 480, 650 MI			
		Solar radiation: $480-030$ MJ			
<u>King (1 (2002)</u>	EACE			1000	Determine the line to
Kim <i>et al.</i> (2003)	FACE	Akitakomachi (Japonica)	Responses to eCO_2 for	1998 season data	Data not available to
	ACO ₂ : 367 ppm	Field grown, Shizukuishi,	the 1999 and 2000		estimate eCO_2
	eCO ₂ : 643, 586 ppm	Japan	seasons		responses of shoot
		Three seasons (1998, 1999, 2000)			biomass.
		(NH4) ₂ SO ₄ : 4g (LN), 8g (MN),			
		12g (HN) m ⁻²			
		Temperature: 20–21°C			
		Solar radiation: 1636 MJ m^{-2}			
Baker (2004)	Sun-lit growth chambers	Cocodrie, Cypress, Jefferson,	eCO ₂ vield responses for	24, 32, 36, 40°C	No data available for
	ACO_2 : 350 ppm	Lamont	Cocodrie, Cypress and	7 - 7 - 7	ACO_2
	eCO_2 : 700 ppm	Potted plants at mini-crop	Jefferson at constant	Lamont data set	No biomass gain with
		spacing	28°C		$exposure to eCO_2$
		Temperature: 24 28 32 36	20 0		
		40°C			
De Costa et al. (2006)	Sun-lit open top	BG300	All vield data sets		
De cosa er al. (2000)	chambers	Field grown Field grown	This yield duta bets		
	ACO_{1} : 370 ppm	I leid grown, I leid grown, January March (rainy season)			
	ACO_2 . 570 ppm	or May August in sub-humid			
	eCO_2 . 570 ppm	or May – August III sub-humid			
		Zone of Shi Lanka			
D_{2} Casta et al. (2007)	See literary ton	16n aanatumes	Subset of 9 constructs	Englanda d. all Mary 6a	aCO2 aliaitad
De Costa <i>et al.</i> (2007)	Sun-lit open-top	Tox genotypes	Subset of 8 genotypes	Excluded all May to	eCO2 elicited
	chambers	Field grown, sub-humid zone	with reported yield	August season crop	negative responses for
	ACO ₂ : 370 ppm	of Sri Lanka	components for	data and BG2/6-5	shoot biomass.
	eCO ₂ : 570 ppm	Two growth seasons	November to March	from November to	
		Temperature: 28–32°C	season except BG276-5	March season	
		Solar radiation: 2067 MJ m ⁻²			

Shimino <i>et al.</i> (2008)	FACE ACO ₂ : 366 ppm eCO ₂ : 570 (2003), 548 (2004) ppm	Akitakomachi (japonica) Field grown, Shizukuishi, Japan Two seasons (2003, 2004) Nitrogen: Controlled release urea or $(NH_4)_2SO_4$ Temperature: 15 to 25°C Solar radiation: 8–26 mol m ⁻² day ⁻¹	All yield data sets		
Cheng <i>et al.</i> (2009)	Growth chambers Reproductive stage only ACO ₂ : 380 ppm eCO ₂ : 680 ppm	IR72 (indica) Potted plants at mini-crop spacing Temperature: 32/32°C, 32/22°C	All yield data sets		
Shimino <i>et al.</i> (2009)	FACE ACO ₂ : 384 ppm eCO ₂ : 570 (2003), 548 (2004)	Kirara, Kakehashi, Aktakomachi, Hitomebore Field grown, Shizukuishi, Japan Two seasons (2003; 2004). Temperature 15–25°C Solar radiation: 2.6 MJ m ⁻² day ⁻¹	All yield data sets		
Yang <i>et al.</i> (2009)	FACE ACO ₂ : 376 ppm eCO ₂ : 565 ppm	Liangyoupeijiu (hybrid) Field grown. Yangzhou, China Temperature: 15°C Nitrogen; 12.5 g m ⁻² (Low N), 25 g m ⁻² (High N)	All yield data sets		
Hasegawa <i>et al.</i> (2013)	FACE ACO ₂ : 386 ppm eCO ₂ : 584 ppm	8 cultivars Field grown at two sites - Shizukuishi and Tsukuba, Japan Three seasons (2007, 2008, 2010) Temperature: 27°C Solar radiation: 10–19 MJ m ⁻²	Yield responses to eCO ₂ at Tsukuba in 2010 season	Shizukuishi (2007, 2008, 2010), Tsukuba (2007, 2008)	Record of whole plant or shoot biomass not reported

Zhang <i>et al.</i> (2013)	FACE	Koshihikari	All yield data sets	
	ACO ₂ : 386 ppm	Filed grown, Tsukuba, Japan		
	eCO ₂ : 584 (2010), 560	Two seasons (2010, 2011)		
	(2011) ppm	Temperature: 25°C		

Reference	eCO ₂ delivery system	Cultivar and plant growth conditions	Data selected	Data excluded	Reasons for data exclusion
Ackerson <i>et</i> <i>al.</i> (1984)	Open-top chambers ACO ₂ : 336 ppm eCO ₂ : 1200 ppm	 Wye (determinant) Field grown, Delaware, USA eCO₂ from: emergence to anthesis or maturity. anthesis to early pod fill early pod fill to maturity. 	Yield data following exposure to eCO ₂ from seedling emergence to maturity	Remaining eCO ₂ exposure periods	Consistency to eCO ₂ developmental states across data sets.
Sionit <i>et al.</i> (1987)	Growth chambers ACO ₂ : 350 ppm eCO ₂ : 675, 1000 ppm	Ransom (determinate) Spaced potted plants Temperature: 18/12, 22/16, 26/20°C PAR: 550 µmol m ⁻² s ⁻¹	Yield response at eCO2 of 675 ppm and 26/20°C	18/12, 22/16°C 1000 ppm at 26/20°C	$18/12^{\circ}$ C: no seed set 22/16°C: no effect of eCO ₂ on seed yield 26/20°C: no effect of 1000 ppm on whole plant biomass
Cure <i>et al.</i> (1988)	Growth chambers ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Lee (non-nodulating soybean) Spaced potted plants KNO ₃ : 0.05, 1.0, 2.5, 5.0, 10.0 mM Temperature: $28/22^{\circ}C$ PAR: 1000 µmol m ⁻² s ⁻¹	eCO ₂ yield responses at 1.0, 2.5, 5.0 and 10 mM KNO ₃	0.05 mM KNO ₃ treatment	Severe N deficiency.
Allan <i>et al.</i> (1991)	Outdoor, sun-lit controlled-environment chambers ACO ₂ : 330 ppm eCO ₂ : 660, 990 ppm	Bragg (indeterminate) Potted plants at mini-crop spacing Temperature: 31/23°C	eCO ₂ yield responses at 660 ppm	eCO ₂ yield responses at 990 ppm	Insect attack
Mulchi <i>et</i> <i>al.</i> (1992)	Open-top chambers ACO ₂ : 350 ppm eCO ₅ : 400, 500 ppm	Clark Field grown, Beltsville, USA	Yield responses to 400 and 500 ppm CO ₂ .	Ozone treatments	Ozone phytotoxicity

Table S3.Summary of data sets selected from the literature on impacts of elevated carbon dioxide on key components of
soybean yield that are accompanied by records of whole plant or shoot biomass changes

Miglietta et al. (1993)	Solfatara, Italy, spring emitting CO ₂ ACO ₂ : 350 ppm eCO ₂ : 652, 2370 ppm	Cresir (determinate) Space potted plants	eCO ₂ yield responses at 652 ppm	eCO ₂ yield responses at 2370 ppm	Data not available.
Heagle <i>et</i> <i>al.</i> (1998)	Open-top chambers ACO ₂ : 350 ppm eCO ₂ : 482, 599, 713 ppm Ozone: 20, 50, 79 ppb	Essex, Holladay, Northrup King Field experiment North Carolina, USA Potted plants	Yield responses to eCO2 at 20 ppb ozone concentration for 1993 and 1994 seasons	Treatments containing ozone at 50 and 79 ppb.	Ozone phytotoxicity
Ziska <i>et al.</i> (1998)	Glasshouse ACO ₂ : 390 ppm eCO ₂ : 700 ppm	Clark (indeterminate), D-70 (determinate), Fiskeby (indeterminate), 1-62-1579 (indeterminate), Spencer (indeterminate) Spaced potted plants Temperature: Min 17°C; Max 31°C PAR: 18.6 mol m ⁻²	All yield data sets		
Heagle <i>et</i> <i>al.</i> (1999)	Open-top chambers ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Essex Field experiment North Carolina Potted plants Temperature: 25°C Pots ± insulation (1994) Soil sown plants (1995)	All yield data sets		
Ferris <i>et al.</i> (1999)	Glasshouse ACO ₂ : 362 ppm eCO ₂ : 685 ppm	Fiskeby V Spaced potted plants Temperature: 25/15°C High temperature and water stress treatments t	Yield responses to eCO2 of well watered plants at ambient temperature	High temperature and water stress	Stress responses confounding eCO ₂ effects on photoassimilate availability.
Ziska and Bunce (2000)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 680 ppm	Ripley (semi dwarf determinate), Spencer (indeterminate) Two seasons (1998, 1999) Field grown, Beltsville, USA	All yield data sets		

Ziska et al (2001)	Glasshouse ACO ₂ : 370 ppm eCO ₂ : 680 ppm	Nine cultivars (determinate, indeterminate) Spaced potted plants Temperature: 22°C Solar radiation: 13–21 mol m ⁻² day ⁻¹	All yield data sets		
Nakamoto <i>et al.</i> (2004)	Sun-lit growth chambers ACO ₂ : 350 ppm eCO ₂ : 700 ppm	Fukuyutaka Spaced potted plants Temperature: 28/22°C eCO2 delivered for: • whole growth period • vegetative growth alone • reproductive growth alone	eCO2 responses for exposure for the entire growth period	 eCOr for: vegetative growth alone reproductive growth alone 	Consistency for evaluation
Booker <i>et</i> <i>al.</i> (2005)	Open-top chambers ACO ₂ : 371 ppm eCO ₂ : 708 ppm	Essex Plants potted or soil grown. Potted plants at min-crop spacing Two seasons (1999, 2000)	All yield data sets		

Reference	eCO ₂ delivery system	Cultivar(s) and plant	Data selected	Data excluded	Reasons for data
Wheeler et al. (1991)	Controlled-environment rooms ACO ₂ : 350 ppm eCO ₂ : 1000 ppm	Norland, Russett Burbank, Denali Spaced potted plants Temperature: 16° C PAR: 400 µmol m ⁻² s ⁻¹ Photoperiod: $12/12, 24$	All yield data sets		
Miglietta et al. (1998)	FACE ACO ₂ : 335. 380 ppm eCO ₂ : 716 (1995), 733 (1996) ppm	Primura Field grown, Tuscany, Italy Temperature: 12–25°C PAR: 20–40 MJ m ⁻² day ⁻¹	All yield data sets		
Schapendonk <i>et al.</i> (2000)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 540, 715 ppm	Gloria, Elles Field grown, Wangingen, Netherlands Temperature; 16°C Solar radiation: 18 MJ m ⁻ dav ⁻¹	All yield data sets		
Donnelly et al. (2001)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 550, 680 ppm Ozone: 65 ppb	Bintje Field grown, Nottingham, UK Temperature; 16°C Solar radiation: 12 MJ m ⁻² day ⁻¹	Response of yield parameters to eCO2 alone	Ozone treatments	Ozone phytotoxicity
Lawson <i>et al.</i> (2001)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 550, 680 ppm Ozone: 60 ppb	Bintje Field grown, Nottingham, UK Temperature 15°C Solar radiation: 12.1 MJ m ⁻ ² day ⁻¹	Response of yield parameters to eCO2 alone	Ozone treatments	Ozone phytotoxicity

Table S4. Summary of data sets selected from the literature on impacts of elevated carbon dioxide on key components of potato yield that are accompanied by records of whole plant or shoot biomass changes.

Craigon <i>et al</i> (2002)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 680 ppm Ozone: 60 ppb FACE ACO ₂ : 370 ppm eCO ₂ : 550 ppm	Bintje Field grown in open-top chambers at six sites: Tervuren (Belgium), Jokioinen (Finland), Giessen (Germany) Carlow (Ireland) Gottenburg (Sweden), Sutton Bonnington (UK) Field grown in FACE, Italy, Germany Two seasons (1998, 1999)	Response of yield parameters to eCO2 in open-top chambers alone	FACE and ozone data sets	FACE data sets do not report yield components Ozone phtotoxicity
Finnan <i>et al</i> . (2002)	Open-top chambers ACO ₂ : 370 ppm eCO ₂ : 680 ppm Ozone: 50, 70 ppb	Bintje Field grown, Carlow, Ireland. Two seasons (1998, 1999) Temperature: 12.4, 13.4°C	Response of yield parameters to eCO2 alone	Ozone treatments	Ozone phytotoxicity
Heagle et al. (2003)	Open-top field chambers ACO ₂ : 370 ppm eCO ₂ : 540, 715 ppm Ozone: 15, 45, 80 ppb	Dark Rd Norland, Superior Spaced potted plants	Response of yield parameters to eCO2 at 15 ppb ozone	Treatments containing 40 and 80 ppb ozone	Ozone phytotoxicity
Persson et al. (2003)	Open-top field chambers ACO ₂ : 370 ppm eCO ₂ : 650 ppm Ozone: 20 ppb	Bintje Field grown, Gottenberg, Sweden	No data used. Response of yield parameters to eCO2 alone in OTCs	Ozone treatment Negative whole plant biomass response to eCO2	Ozone phytotoxicity
Högy and Fangmeier (2009)	Open-top field chambers ACO ₂ : 380 ppm eCO ₂ : 550, 680 ppm	Bintje Field grown, Giessen, Germany Two seasons (1998, 1999) Temperature: 20°C Solar radiation: 10 MJ m ⁻² day ⁻¹	All yield data sets		

Reference	eCO ₂ delivery system	Cultivar and plant	Data selected	Data excluded	Reasons for data
Wyse (1980)	Open-top chamber ACO ₂ : 330 ppm eCO ₂ : 600–800 ppm	AH-10 Field grown, Logan Utah, USA	All yield data sets		
Ziska <i>et al</i> . (1995)	Controlled environmental chambers – indoors, outside ACO ₂ : 366, 332 ppm eCO ₂ : 700, 725 ppm	Spaced potted plants Outside: two growth periods – Sept/Oct (19°C) and July/Aug (31°C) PAR: 690 and 894 µmol m ⁻² s ⁻¹	All yield data sets		
Demmers-Derks <i>et al.</i> (1998)	Sun-lit growth chambers ACO ₂ : 360 ppm eCO ₂ : 600, 700 ppm	Celt Potted plants outdoors at mini-crop spacing, Rothamstead, UK Three growth seasons (1993, 1994, 1995). Nitrate: 1 and 10 mM Temperature: ambient (15°C; 5 to 30°C), ambient + 3°C PAR: 3692–3892 mol m ⁻ ₂	All yield data sets		
Wolf (1998)	Glasshouse ACO ₂ : 3i5 ppm eCO ₂ : 695 ppm	Spaced potted plants NPK concentrations 10 and 30% of optimal supply. Temperature: 20/15°C Solar radiation: 3.1 MJ m ⁻² day ⁻¹	Yield data responses of full nutrient plants to eCO ₂	Data obtained from plants grown under nutrient deficiency	Nutrient deficiencies attenuated sink strength.

Table S5. Summary of data sets selected from the literature on impacts of elevated carbon dioxide on key components of sugarbeet yield that are accompanied by records of whole plant or shoot biomass changes.

Manderscheid et al.	FACE	Impuls	All yield data sets	
(2010)		Field grown,		
	ACO ₂ : 375 ppm	Braunschweig, Germany		
	eCO ₂ : 550 ppm			
		Nitrogen. Normal		
		agronomic rates and 50%		
		of normal rates		
		Temperature: 10–18°C		
		Solar radiation: 10–20		
		MJ $m^{-2} day^{-1}$		
Weigel and	FACE	Wiebke, Impuls	All yield data sets	
Manderscheid (2012)		Field grown,		
	ACO ₂ : 375 ppm	Braunschweig, Germany		
	eCO ₂ : 550 ppm	Temperature: 14°C		
		Nitrogen. Normal		
		agronomic rates and 50%		
		of normal rates		

Table S6. Numbers of observations used in the eCO₂ response analyses of crop yield components obtained from plants raised singly in spaced pots versus those from potted plants arranged in mini-crop configurations or raised under field conditions

Crop species	Numbers of observations obtained from:				
	Singly potted/spaced plants	Potted mini-crop/field raised plants			
Wheat	0	52			
Rice	4	54			
Soybean	20	35			
Potato	16	23			
Sugar beet	4	15			

References

- Ackerson RC, Havelka UD, Boyle MG (1984) CO₂-enrichment effects on soybean physiology. II. Effects of stage-specific CO₂ exposure. *Crop Science* 24, 1150– 1154. doi:10.2135/cropsci1984.0011183X002400060034x
- Allen LH, Bisbal EC, Boote KJ, Jones PH (1991) Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. *Agronomy Journal* 83, 875–883. doi:10.2134/agronj1991.00021962008300050020x
- Baker JT (2004) Yield responses of southern US rice cultivars to CO₂ and temperature. *Agricultural and Forest Meteorology* **122**, 129–137. <u>doi:10.1016/j.agrformet.2003.09.012</u>
- Baker JT, Allen LH, Boote KJ (1990) Growth and yield responses of rice to carbon dioxide concentration. *The Journal of Agricultural Science* **115**, 313–320. <u>doi:10.1017/S0021859600075729</u>
- Baker JT, Allen JR, Boote KJ (1992*a*) Temperature effects on rice at elevated CO₂ concentration. *Journal of Experimental Botany* 43, 959–964.
 <u>doi:10.1093/jxb/43.7.959</u>
- Baker JT, Allen JR, Boote KJ (1992*b*) Response of temperature to carbon dioxide and temperature. *Agricultural and Forest Meteorology* **60**, 153–166. <u>doi:10.1016/0168-1923(92)90035-3</u>
- Booker FL, Miller JE, Fiscus EL, Pursley WA, Stefanski LA (2005) Comparative responses of container-versus ground-sown soybean to elevated carbon dioxide and ozone. *Crop Science* **45**, 883–895. <u>doi:10.2135/cropsci2004.0198</u>
- Bourgault M, Dreccer MF, James AT, Chapman SC (2013) Genotypic variability in the response to elevated CO₂ of wheat lines differing in adaptive traits. *Functional Plant Biology* **40**, 172–184. doi:10.1071/FP12193
- Bugbee B, Spanarkel B, Johnson S, Monje O, Koerner G (1994) CO₂ crop enhancement and toxicity in wheat and rice. *Advances in Space Research* 14, 257– 267. doi:10.1016/0273-1177(94)90306-9
- Cheng W, Sakai H, Yagi K, Gasegawa T (2009) Interactions of elevated [CO₂] and night temperature on rice growth and yield. *Agricultural and Forest Meteorology* **149**, 51–58. doi:10.1016/j.agrformet.2008.07.006

- Craigon J, Fangmeier A, Jones M, Donnelly A, Bindi M, De Temmerman L, Persson K, Ojanpera K (2002) Growth and marketable-yield responses of potato to increased CO₂ and ozone. *European Journal of Agronomy* 17, 273–289.
 <u>doi:10.1016/S1161-0301(02)00066-7</u>
- Cure JD, Israel DW, Rufty TW (1988) Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. *Crop Science* 28, 671–677. doi:10.2135/cropsci1988.0011183X002800040023x
- De Costa WAJM, Weerakoon WMW, Herath HMLK, Abeywardena RMI (2003)
 Response of growth and yield of rice (*Oryza sativa*) to elevated atmospheric carbon dioxide in subhumid zone of Sri Lanka. *Journal Agronomy & Crop Science* 189, 83–95. doi:10.1046/j.1439-037X.2003.00013.x
- De Costa WAJM, Weerakoon WMW, Herath HMLK, Amarantunga KSP, Abeywardena RMI (2006) Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate. *Field Crops Research* **96**, 336–347. <u>doi:10.1016/j.fcr.2005.08.002</u>
- De Costa WAJM, Weerakoon WMW, Chinthaka KGR, Herath HMLK, Abeywardena RMI (2007) Genotypic variation in the response of rice (*Oryza sativa* L.) to increased atmospheric carbon dioxide and its physiological basis. *Journal Agronomy & Crop Science* **193**, 117–130. <u>doi:10.1111/j.1439-037X.2007.00255.x</u>
- de Oliveria ED, Bramley H, Siddique KHM, Henty S, Berger J, Palta JA (2013) Can elevated CO₂ combined with high temperature ameliorate the effect of terminal drought in wheat? *Functional Plant Biology* **40**, 160–171. <u>doi:10.1071/FP12206</u>
- Demmers-Derks H, Mitchell RAC, Mitchell VJ, Lawlor DW (1998) Response of sugar beet (*Beta vulgaris* L.) yield and biochemical composition to elevated CO₂ and temperature at two nitrogen applications. *Plant, Cell & Environment* 21, 829– 836. doi:10.1046/j.1365-3040.1998.00327.x
- Donnelly A, Craigon J, Black CR, Colls JJ, Landon G (2001) Elevated CO₂ increases biomass and tuber yield even at high ozone concentrations. *New Phytologist* **149**, 265–274. <u>doi:10.1046/j.1469-8137.2001.00015.x</u>
- Fangmeier A, Grüters U, Hertstein U, Sandhage-Hofmann A, Vermehren B, Jäger H-J (1996) Effects of elevated CO₂, nitrogen supply and tropospheric ozone on spring

wheat. I. Growth and yield. *Environmental Pollution* **91**, 381–390. doi:10.1016/0269-7491(95)00042-9

- Ferris R, Wheeler TR, Ellis RH, Hadley P (1999) Seed yield after environment stress in soybean grown under elevated CO₂. *Crop Science* **39**, 710–718. <u>doi:10.2135/cropsci1999.0011183X003900030018x</u>
- Finnan JM, Donnelly A, Burke JI, Jones MB (2002) The effects of elevated concentrations of carbon dioxide and ozone on potato (*Solanum tuberosum* L.) yield. *Agriculture, Ecosystems & Environment* 88, 11–22. doi:10.1016/S0167-8809(01)00158-X
- Gifford RM (1977) Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. *Australian Journal of Plant Physiology* **4**, 99–110. <u>doi:10.1071/PP9770099</u>
- Hakala K (1998) Growth and yield potential of spring wheat in a simulated changed climate with increased CO₂ and higher temperature. *European Journal of Agronomy* 9, 41–52. doi:10.1016/S1161-0301(98)00025-2
- Hasegawa T, Sakai H, Tokida T, Nakamura H (2013) Rice cultivar responses to elevated CO₂ at two free-air CO₂ enrichment (FACE) sites in Japan. *Functional Plant Biology* 40, 148–159. doi:10.1071/FP12357
- Havelka UD, Wittnebach VA, Boyle MG (1984) CO₂-enrichment effects on wheat yield and physiology. *Crop Science* 24, 1163–1168. <u>doi:10.2135/cropsci1984.0011183X002400060037x</u>
- Heagle AS, Miller JE, Pursley WA (1998) Influence of ozone stress on soybean response to carbon dioxide enrichment: III. Yield and seed quality. *Crop Science* 38, 128–134. doi:10.2135/cropsci1998.0011183X003800010022x
- Heagle AS, Booker FL, Miller JE, Pursley WA, Stefanski LA (1999) Influence of daily carbon dioxide exposure duration and root environment on soybean response to elevated carbon dioxide. *Journal of Environmental Quality* 28, 666–675. doi:10.2134/jeq1999.00472425002800020034x
- Heagle AS, Miller JE, Pursley WA (2003) Growth and yield responses of potato to mixtures of carbon dioxide and ozone. *Journal of Environmental Quality* 32, 1603– 1619. doi:10.2134/jeq2003.1603

- Högy P, Fangmeier A (2009) Atmospheric CO₂ enrichment affect potatoes: I.
 Aboveground biomass production and tuber yield. *European Journal of Agronomy* 30, 78–84. doi:10.1016/j.eja.2008.07.007
- Khan MAH, Madsen A (1986) Leaf diffusive resistance and water economy in carbon dioxide-enriched rice plants. *New Phytologist* **104**, 215–223. <u>doi:10.1111/j.1469-8137.1986.tb00646.x</u>
- Kim H-Y, Lieffering M, Kobayashi K, Okada M, Mitchell MW, Gumpertz M (2003)
 Effects of free-air CO₂ enrichment and nitrogen supply on the yield of temperature paddy rice crops. *Field Crops Research* 83, 261–270. doi:10.1016/S03784290(03)00076-5
- Lawson T, Craigon J, Black JJ, Tulloch A-M, Landon G (2001) Effects of elevated carbon dioxide and ozone on the growth and yield of potatoes (*Solanum tuberosum*) grown in open-top chambers. *Environmental Pollution* **111**, 479–491. <u>doi:10.1016/S0269-7491(00)00080-4</u>
- Li W, Han X, Zhang Y, Li Z (2007) Effects of elevated CO₂ concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. *Agricultural Water Management* **87**, 106–114. doi:10.1016/j.agwat.2006.06.027
- Manderscheid R, Weigel HJ (1997) Photosynthetic and growth responses of old and modern spring cultivars to atmospheric CO₂ enrichment. *Agriculture, Ecosystems* & *Environment* 64, 65–73. doi:10.1016/S0167-8809(97)00020-0
- Manderscheid R, Pacholski A, Weigel H-J (2010) Effects of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO₂. *European Journal of Agronomy* 32, 228–239. doi:10.1016/j.eja.2009.12.002
- McKee IF, Bullimore JF, Long SP (1997) Will elevated CO₂ concentrations protect the yield of wheat from O₃ damage? *Plant, Cell & Environment* **20**, 77–84. <u>doi:10.1046/j.1365-3040.1997.d01-1.x</u>
- Miglietta F, Raschi A, Resti R, Badiani M (1993) Growth and onto-morphogenesis of soybean (*Glycine max* Merril) in an open, naturally CO₂-enriched environment. *Plant, Cell & Environment* 16, 909–918. doi:10.1111/j.1365-3040.1993.tb00514.x

- Miglietta F, Magliulo V, Bindi M, Vaccari FP, Loduca V, Peressotti A (1998) Free air CO₂ enrichment of potato (*Solanum tuberosum* L.): development, growth and yield. *Global Change Biology* 4, 163–172. doi:10.1046/j.1365-2486.1998.00120.x
- Mitchell RAC, Mitchell VJ, Driscol SP, Franklin J, Lawlor DW (1993) Effects of increased CO₂ concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. *Plant, Cell & Environment* 16, 521–529. doi:10.1111/j.1365-3040.1993.tb00899.x
- Mulchi CL, Slaughter L, Saleem M, Lee EH, Pausch R, Rowland R (1992) Growth and physiological characteristics of soybean in open-top chambers in response to ozone and increased atmospheric CO₂. *Agriculture, Ecosystems & Environment* **38**, 107–118. doi:10.1016/0167-8809(92)90172-8
- Mulholland BJ, Craigon J, Black CR, Colls JJ, Atherton J, Landon G (1997) Effects of elevated carbon dioxide and ozone on the growth and yield of spring wheat (*Triticum aestivum* L.). *Journal of Experimental Botany* **48**, 113–122. doi:10.1093/jxb/48.1.113
- Nakamoto H, Zheng S-H, Tanaka K, Yamazaki A, Furuya T, Iwaya-Inoue M,
 Fukuyama M (2004) Effects of carbon dioxide enrichment during different growth periods on flowering, pod set and seed yield in soybean. *Plant Production Science* 7, 11–15. doi:10.1626/pps.7.11
- Persson K, Danielsson H, Selldén G, Pleijel H (2003) The effects of trophospheric ozone and elevated carbon dioxide on potato (*Solanum tuberosum* L. cv. Bintje) growth and yield. *The Science of the Total Environment* **310**, 191–201. doi:10.1016/S0048-9697(02)00639-3
- Rawson HM (1995) Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. *Australian Journal* of Plant Physiology 22, 23–32. doi:10.1071/PP9950023
- Schapendonk AHCM, van Oijen M, Dijkstra P, Pot SC, Jordi WJRM, Stoopen GM (2000) Effects of elevated CO₂ concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. *Australian Journal of Plant Physiology* 27, 1119–1130.

- Seneweera S, Milham P, Conroy J (1994) Influence of elevated CO₂ and phosphorus nutrition on the growth and yield of a short-duration rice (*Oryza sativa* L. cv. Jarrah). *Australian Journal of Plant Physiology* **21**, 281–292. <u>doi:10.1071/PP9940281</u>
- Sharma-Natu P, Khan FA, Ghildiyal MC (1997) Photosynthesis acclimation to elevated CO in wheat cultivars. *Photosynthetica* 34, 537–543. <u>doi:10.1023/A:1006809412319</u>
- Shimono H, Okada M, Yamakawa Y, Nakamura H, Kobayashi K, Hasegawa T (2008) Rice yield enhancement by elevated CO₂ is reduced in cool weather. *Global Change Biology* 14, 276–284. doi:10.1111/j.1365-2486.2007.01498.x
- Shimono H, Okada M, Yamakawa Y, Nakamura H, Kobayashi K, Hasegawa T (2009) Genotypic variation in rice yield enhancement by elevated CO₂ relates to growth before heading, and not to maturity group. *Journal of Experimental Botany* **60**, 523–532. doi:10.1093/jxb/ern288
- Sionit N, Strain BR, Flint EP (1987) Interaction of temperature and CO₂ enrichment on soybean: photosynthesis and seed yield. *Canadian Journal of Plant Science* **67**, 629–636. doi:10.4141/cjps87-089
- Tausz-Posch S, Seneweera S, Norton RM, Fitzgerald GJ, Tausz M (2012) Can a wheat cultivar with high transpiration efficiency maintain its yield advantage over a near-isogenic cultivar under elevated CO₂? *Field Crops Research* 133, 160–166. <u>doi:10.1016/j.fcr.2012.04.007</u>
- Van Oijen M, Schapendonk AHCM, Jansen JH, Pot CS, Maciorowski R (1999) Do open top-chambers overestimate the effects of rising CO₂ on plants? An analysis using spring wheat. *Global Change Biology* 5, 411–421. <u>doi:10.1046/j.1365-2486.1999.00233.x</u>
- Weigel H-J, Manderscheid R (2012) Crop growth responses to free air CO₂ enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat. *European Journal of Agronomy* **43**, 97–107. <u>doi:10.1016/j.eja.2012.05.011</u>
- Weigel H-J, Manderscheid R, Jäger H-J, Mejer GJ (1994) Effects of season-long CO₂ enrichment on cereals. I. Growth performance and yield. *Agriculture, Ecosystems* & *Environment* 48, 231–240. doi:10.1016/0167-8809(94)90105-8

- Wheeler RM, Tibbitts TW, Fitzpatrick AH (1991) Carbon dioxide effects on potato growth under different photoperiods and irradiance. *Crop Science* **31**, 1209–1213. <u>doi:10.2135/cropsci1991.0011183X003100050026x</u>
- Wolf J (1998) Effects of nutrient (NPK) supply on sugar beet response to elevated atmospheric CO₂. *Netherlands Journal of Agricultural Science* **46**, 157–170.
- Wyse R (1980) Partitioning within the taproot of sugar beet effect of photosynthate supply. *Crop Science* 20, 256–258. doi:10.2135/cropsci1980.0011183X00200020027x
- Yang L, Liu H, Wang Y, Zhu J, Huang J, Liu G, Dong G, Wang Y (2009) Impact of elevated CO₂ concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. *Field Crops Research* **112**, 7–15. <u>doi:10.1016/j.fcr.2009.01.008</u>
- Zhang G, Sakai H, Tokida T, Usui Y, Zhu C, Nakamura H, Yoshimoto M, Fukuoka M, Kobayashi K, Hasewaga T (2013) The effects of free-air CO₂ enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (*Oryza sativa* L.). *Journal of Experimental Botany* 64, 3179–3188. doi:10.1093/jxb/ert154
- Ziska LH (2008) Three-year field evaluation of early and late 20th century spring wheat cultivars to projected increases in atmospheric carbon dioxide. *Field Crops Research* **108**, 54–59. doi:10.1016/j.fcr.2008.03.006
- Ziska LH, Bunce JA (2000) Sensitivity of field-grown soybean to future atmospheric CO₂: selection for improved productivity in the 21st century. *Australian Journal of Plant Physiology* 27, 979–984.
- Ziska LH, Sicher RC, Kremmer DF (1995) Reversibility of photosynthetic acclimation of swiss chard and sugarbeet grown at elevated CO₂. *Physiologia Plantarum* **95**, 355–364. <u>doi:10.1111/j.1399-3054.1995.tb00849.x</u>
- Ziska LH, Bunce JA, Caulfield F (1998) Intraspecific variation in seed yield of soybean (*Glycine max*) in response to increased carbon dioxide. *Australian Journal* of Plant Physiology 25, 801–807. doi:10.1071/PP98058
- Ziska LH, Bunce JA, Caulfield F (2001) Rising atmospheric carbon dioxide and seed yield of soybean genotypes. *Crop Science* **41**, 385–391. doi:10.2135/cropsci2001.412385x