Supplementary Material

Table S1. Statistic analysis for the segregation ratio of target genes and selection-marker genes and co-transformed frequencies in T_0 and T_1 progeny tobacco plants.

	Number of kanamusin				Number of	Number of	Number of
Types	Number of kanamycin- resitance T0 progeny	Number of	Number of Co	o-transforation	different T1 progeny		
	plants (total)	T0 (G+P-) a	T0 (G+P+)b	Rate (%)	(total)	(G-P-) c	(P+) d
	134	128	38	29.6	32	26	15
		120 33		28	20	13	
					25	19	11
VpSH737 :					31	25	13
-					30	27	16
VpSH737-U4Cn					28	18	14
(1:1)					28	16	12
					32	22	17
	159	139	32	23.02	30	24	13
					22	17	9
VpSH737 :					26	20	10
vp3H737 . /pSH737-U4Cn-RcH	ak				28	21	12
(1:1)	an				25	19	9
(1.1)					22	18	10
					23	16	11
					26	21	12

a Gus histochemical staining-positive with PCR amplification-negative;

b Gus histochemical staining-positive with PCR amplification-positive;

c Gus histochemical staining-negative with PCR amplification-negative;

d PCR amplification-positive.

Table S2. The statistical analysis of average thickness of both two tansgenic plants leaf.

				Levene's Test for		T-test for Equality of	
		Simple sizes	Leaf thickness	Equality of Variances		Means	
Group	Туре	(N)	(mm)	F	Sig.	Sig. (2-tailed)	
	CN-HAK1	5	0.202±0.003**			0.000	
1	CN	5	0.161±0.002	2.165	0.179	0.000	
	WT	5	0.143±0.003	0.490	0.504	0.000	
2	CN-HAK1	5	0.196±0.002**			0.000	
	CN	5	0.159±0.002	0.416	0.537	0.000	
	WT	5	0.137±0.002	0.299	0.599	0.000	
3	CN-HAK1	5	0.205±0.002**			0.000	
	CN	5	0.161±0.002	0.096	0.764	0.000	
	WT	5	0.140±0.001	2.353	0.164	0.000	

(Data represent mean \pm SE, **P<0.001; n=5)

Table S3. The statistical analysis of average sizes of necrotic spots in inoculated-leaf of both two tansgenic plants.

Group Ty	Туре	Sample sizes (N)	Size of necrotic spots (mm)	Levene's Test for Equality of Varirances		T-test for Equality of Means	
				F	Sig.	Sig.(2-tailed)	
	CN-HAK1	25	0.584±0.075**	0.711	0.406	0.000	
1	CN	25	1.084±0.057			0.000	
	CN-HAK1	25	0.568±0.060**	6.199	0.016	0.000	
2	CN	25	1.092±0.088			0.000	
3 3	CN-HAK1	25	0.576±0.055**	4.903	0.032	0.000	
	CN	25	1.132±0.083			0.000	

(Data represent mean \pm SE, **P<0.001; n=25)

Fig. S1. The effect of TMV-infection on the growth of the two transgnic and wild-type tobacco plants. Lateral plan for wild-type and transgenic plants at 21 d after inoculation, **d** Top view for the upper leaf without TMV-inoculation **CN-HAK** trans-*CN-HAK1* plants, **CN** trans-*CN* plant, **WT** wild-type plant.

Fig. S2. The qRT-PCR analysis of TMV-*CP* gene in the inoculated and top uninoculated leaf of *CN-HAK1*-containing, *CN*-containing and wild-type tobacco plants. **a** The relative expression of TMV-*CP* in the inoculated and top uninoculated leaf of wild-type, *CN*-containing, and *CN-HAK1*-containing plants orderly at day 5 after TMV-inoculation. The pores 1, 3, 5 represents for the TMV-*CP* expression in the inoculated-leaf of wild-type, *CN*-containing, and *CN-HAK1*-containing tobaccos respectively, and the pores 2, 4, 6 represents for the TMV-*CP* expression in the top uninoculated-leaf of wild-type, *CN*-containing, and *CN-HAK1*-containing tobaccos respectively. **b** The expression levels of TMV-*CP* in transgenic and wild-type plants at day 12 after TMV-inoculation. **b** The expression levels of TMV-*CP* in transgenic and wild-type plants at day 18 after TMV-inoculation. **b** The expression levels of TMV-*CP* in transgenic and wild-type plants at day 18 after TMV-inoculation.

Fig. S3. The relative expression of NHA1 gene. The gene has been reported to plays an important role in K+-absorbing in response to abiotic stress (Lu et al., 2005), but there was seemly no significant difference in NHA1 expression level in response to biotic stress (TMV-infection) in this study.

Fig. S4. The relative expression of *CN* gene in *CN*- and *CN-HAK1*-containing tobacco plants. **CN-HAK1**: trans-*CN-HAK1* tobaccos, **CN**: trans-*CN*-baccos.

Fig. S5. The qRT-PCR analysis for *HAK1* gene under water-planting. **CN-HAK1**: trans-*CN- HAK1* tobaccos, **CN**: trans- *CN* tobaccos, **WT** wild-type tobaccos.