10.1071/FP15244_AC © CSIRO 2016 Supplementary Material: *Functional Plant Biology*, 2016, 43(2), 189–198.

Supplementary Material

Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8

Katharina Schneebeli^{A,B,F,I}, Ulrike Mathesius^B, Alexander B. Zwart^{A,G}, Jennifer N. Bragg^C, John P. Vogel^{D,E} and Michelle Watt^{A,H}

^ACSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.

^BDivision of Plant Science, Research School of Biology, 134 Linnaeus Way, Australian National University, Canberra, ACT 2601, Australia.

^CJoint BioEnergy Institute, 5885 Hollis St. ESE 4th Floor, Emeryville, CA 94608, USA.

^DDOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.

^EUSDA-ARS Western Regional Research Centre, Albany, CA 94710, USA.

^FPresent address: NSW Department of Primary Industries, 21 888 Kamilaroi Highway, Narrabri, NSW 2390, Australia.

^GPresent address: CSIRO Data61, GPO Box 664, Canberra, ACT 2601, Australia.

^HPresent address: Plant Sciences (IBG-2), Forschungszentrum Jülich, 52 428 Jülich, Germany.

^ICorresponding author. Email: kathy.schneebeli@dpi.nsw.gov.au

Table S1. Information on tagged genes of T-DNA lines included in R. solani AG8 disease screening experiments

Lines were chosen, from those available, based on literature evidence that disruption of putative T-DNA tagged genes could have an effect on disease resistance, root growth or interaction with cell wall degrading enzymes produced by *R. solani* AG8.

JJ line number	T-DNA tagged gene	Construct ^A ; T-DNA location	NCBI Protein-BLAST sequence homology with predicted or known genes, <i>E</i> -value	Notes on gene family homologues from cited references and The UniProt Consortium (2012)
77	Bradi3g36010	pOL001; in gene	Predicted: nucleobase-ascorbate transporter 6-like [<i>B. distachyon</i>], 0.0	NAT6 expressed in Arabidopsis seedling roots and lateral root primordia (UniPROT Q27GI3) (Maurino <i>et al.</i> , 2006).
654	Bradi1g23450	pOL001; in gene	Predicted: polyol transporter 5-like [<i>B. distachyon</i>], 0.0	Sugar-proton symporter; highly expressed in Arabidopsis roots, induced by wounding and insect feeding (UniPROT Q8VZ80) (Klepek <i>et al.</i> , 2005; Reinders <i>et al.</i> , 2005).
705	Bradi2g48120	pOL001; in gene	Predicted: ras-related protein Rab7-like [<i>B. distachyon</i>], 3e-150	Small GTP-binding proteins; wheat Rab7 is involved in response to stripe rust and abiotic stress (Liu <i>et al.</i> , 2012).
2426	Bradi3g29780	pJJ2LBA activation tagging; ~ 250 bases downstream	Predicted: probable aquaporin TIP3-1- like [<i>B. distachyon</i>], 0.0	Facilitated water movement and possible root water uptake (Sakurai <i>et al.</i> (2005). Aligns with <i>OsTIP3;1</i> , expressed in leaves and at lower levels in roots; 100% coverage, 87% identity, 2e -150, (UniPROT Q9FWV6).
2596	Bradi3g04080	pJJ2LB; ~240 bases upstream	Predicted: endoglucanase 5-like [B. distachyon], 0.0	Cell wall synthesis (Liberti <i>et al.</i> 2004). Glycosyl hydrolase 9 family; secreted protein hydrolyses linkages in cellulose, lichenin and cereal beta-D-glucans (UniPROT Q9M995).
2771	Bradi3g54950	pJJ2LB; in gene	Predicted: dihydroflavonol-4-reductase- like [B. distachyon], 0.0	Involved in flavonoid and pigment biosynthesis (UniPROT P51102); DFR involved in response to fungal and bacterial pathogens in rice (Hayashi <i>et al.</i> , 2005).
2892	Bradi3g33510	pJJ2LB; in gene	Predicted: protein ARABIDILLO 1-like [<i>B. distachyon</i>], 0.0	Promoter of lateral root development in Arabidopsis (Coates et al., 2006).
3175	Bradi3g39050	pJJ2LB; in gene	Predicted: DNA (cytosine-5)- methyltransferase 3-like [<i>B. distachyon</i>], 0.0	May be involved in DNA methylation and gene silencing (UniPROT Q8LPU5).

3400	Bradi2g47210	pJJ2LB; intergenic ~4.2 kb downstream	Predicted: basic endochitinase A-like isoform 1 [<i>B. distachyon</i>], 0.0	Glycosyl hydrolase 19 family; hydrolysis of linkages in chitin and chitodextrins (UniPROT P29022). Defense against chitin-containing fungal pathogens (Huynh <i>et al.</i> , 1992).
3794	Bradi1g54290	pJJ2LB; ~ 790 bases upstream	Late embryogenesis abundant hydroxyproline-rich glycoprotein [Arabidopsis thaliana], 2e-28	LEAs are involved in desiccation survival, abiotic stress tolerance (Hundertmark and Hincha 2008), root architecture and necrotrophic disease response (Salleh <i>et al.</i> , 2012).
4243	Bradi5g27660	pJJ2LB; ~ 590 bases upstream	Predicted: U-box domain-containing protein 25-like [<i>Fragaria vesca</i> subsp. <i>vesca</i>], 5e-54	Functions as an E3 ubiquitin ligase (UniPROT Q9LT79). Involved in defence response; response to chitin (Libault <i>et al.</i> , 2007).
4774	Bradi3g39700	pJJ2LB; ~ 350 bases upstream	Predicted: wall-associated receptor kinase 5-like [<i>B. distachyon</i>], 0.0	Serine/threonine protein kinase; induced by salicylic acid and pathogens (He <i>et al.</i> 1999) (UniPROT Q9LMN7).
5088	Bradi3g14370	pJJ2LBP2 gene trap; in gene	Predicted: probable beta-1,3- galactosyltransferase 20-like [<i>B. distachyon</i>], 0.0	Glycosyltransferase family 31, galectin domain; protein modification and glycosylation; N-glycan synthesis; expressed mainly in stems (UniPROT A7XDQ9) (Strasser <i>et</i> <i>al.</i> , 2007). Galectins are involved in mammalian defence response (Sato <i>et al.</i> , 2009).
7557	Bradi3g16430	pJJ2LBP2 gene trap; in gene	Predicted: probable LRR receptor-like serine/threonine-protein kinase At3g47570-like [<i>B. distachyon</i>], 0.0	LRRs often involved in plant defence response (Marone <i>et al.</i> , 2013) (UniPROT COLGP4).
8634	Bradi2g50980	pJJ2LBA activation tagging; in gene	Glycosyl hydrolase, family 43 protein [Zea mays], 0.0	Glycosyl hydrolase family 43 involved in plant cell wall modification (Gilbert <i>et al.</i> , 2008) (UniPROT B6U6P8).
8913	Bradi1g69610	pJJ2LBA activation tagging; ~ 580 bases upstream	Predicted: glucan endo-1,3-beta- glucosidase 3-like [<i>B. distachyon</i>], 0.0	Glycosyl hydrolase family 17; involved in wheat abiotic and biotic defence response (UniPROT P52409).
9212	Bradi1g62970	pJJ2LBA activation tagging; in gene	RING-H2 finger protein ATL5 [<i>Triticum urartu</i>], 5e-27	Aligns with a capsicum RING-H2 E3 ubiquitin ligase protein involved in biotroph defence response, 90% query coverage, 32% amino acid identity, 4e-17 (UniPROT G0T3B3) (Lee <i>et al.</i> , 2011).

9278	Bradi1g68540	pJJ2LBA activation tagging; in gene	Predicted: translocase of chloroplast 34, chloroplastic-like [<i>B. distachyon</i>], 0.0	GTPase, imports protein precursors into chloroplast, light- induced, expressed mostly in roots and flowers (UniPROT Q38906).
9840	Bradi1g23640	pJJ2LBA activation tagging; in gene	Predicted: glucan endo-1,3-beta- glucosidase 4-like [<i>B. distachyon</i>], 0.0	Glycosyl hydrolase family 17; inferred carbohydrate metabolism and defence response (UniPROT Q94CD8).

^A Construct details are given in Bragg *et al.* (2012)

Table S2.Description of methods used for screening and confirmation activities with natural accession and T-DNA collections. Soil A,'Barley mix'; soil B, 50% sand:'Special'

Analysis method 'Rs/C', described in the main text method section, uses the ratio of *R. solani* AG8-inoculated (Rs) to uninoculated control (C) root length to compare disease resistance between lines. Analysis method 'Rs only' was tested as a means of reducing the number of plants required per experiment. Disease resistance comparison is based on the ratio of untransformed root length measurements of the T-DNA line to the reference line (Bd 21-3) in *R. solani* AG8-inoculated treatments. *Average seed weight* and *Days to emergence* were included as fixed terms in the REML analysis to partially account for endogenous plant vigour in control plants. Application of this method to initial screening data also analysed with method 'Rs/C' gave a positive correlation for resistance rankings ($R^2 = 0.5599$, P = 0.005), but in practice method 'Rs only' was less robust than method 'Rs/C'.

Collection	Expt	Activity	Number of lines	Reps ^A	Soil	Days to harvest	Analysis method
Accessions	1	Screening	26	3	А	22	Rs/C
Accessions	2	Confirmation	4	2	В	26	Rs/C
T-DNA	1	Screening	11	3 ^B	А	22	Rs/C
T-DNA	2	Screening	9	1	А	10, 18, 26	Rs only
T-DNA	3	Screening Screen./Conf.	10 3 ^C	1	В	26	Rs only Rs/C
T-DNA	4	Confirmation	7	1	В	26	Rs/C

^A Replicate experiments sown at different times.
 ^B Except lines 654-9 and 3400-2
 ^C Control treatments were included for three of the 10 lines. This was a confirmation activity for line 77-5.

Table S3. Phenotype measurements for natural accessions in screening and confirmation experiments with *R. solani* AG8-inoculated (Rs) and control (C) treatments

Means are followed by the ratio of inoculated to control treatment values.

Line	Total ro	ot length	Leaf nu	Leaf number		
	Rs	С	Ratio	Rs	С	Ratio
Screening act	tivity					
BdTR 13a	7.47 ^A	15.7 ^A	0.48	3.52	3.94 ^A	0.89
BdTR 1i	8.54	16.8 ^A	0.51	3.28	3.69	0.89
Adi-12	8.69	16.6 ^A	0.52	3.43	3.64	0.94
Koz-1	8.38	15.3 ^A	0.55	3.30	3.61	0.91
Bd 21-3	8.70 ^A	15.3 ^A	0.57	3.26 ^A	3.55	0.92
BdTR 10c	8.61	14.8	0.58	3.25 ^A	3.59	0.90
BdTR 5i	9.64	16.7 ^A	0.58	3.08 ^A	3.33 ^A	0.93
BdTR 11i	8.72	14.9	0.59	3.15 ^A	3.53	0.89
Bd 21	9.46	15.9 ^A	0.59	3.25 ^A	3.45	0.94
BdTR 13c	8.23 ^A	13.6	0.61	3.39	3.73 ^A	0.91
BdTR 10o	10.1	16.1 ^A	0.63	3.36	3.67	0.91

BdTR 2g	10.2	16.3 ^A	0.63	3.51	3.74 ^A	0.94		
Adi-10	10.2	15.8 ^A	0.64	3.51	3.74 ^A	0.94		
BdTR 3c	9.58	15.0	0.64	3.38	3.52	0.96		
Bd 3-1	9.63	14.7	0.65	3.56	3.71	0.96		
Tek-4	8.50	12.8	0.66 ^B	3.11 ^A	3.20 ^A	0.97		
Cas 2	9.76	14.4	0.68	3.16 ^A	3.38	0.94		
Abr 2	8.70	12.7	0.69 ^B	2.92 ^A	3.13 ^A	0.93		
Bd 1-1	8.45 ^A	12.3	0.69 ^B	3.12 ^A	3.33 ^A	0.94		
BdTR 9k	11.0	15.8 ^A	0.69	3.35	3.53	0.95		
Bd 2-3	10.8	15.3 ^A	0.70	3.32	3.52	0.94		
Bd 18-1	10.4	14.5	0.71 ^B	3.63	3.84 ^A	0.94		
Arn 1	10.2	14.4	0.71 ^B	3.48	3.66	0.95		
BdTR 12c	10.7	14.5	0.74 ^B	3.59	3.49	1.03 ^B		
Bd 30-1	7.68 ^A	9.91 ^A	0.77 ^B	2.82 ^A	3.11 ^A	0.90		
Koz-3	10.4	13.3	0.78^{B}	3.47	3.53	0.98 ^B		
Confirmation activity								
BdTR 13a	9.2 ^A	21	0.44 ^C	3.9 ^A	4.5	0.88 ^C		
Bd 30-1	11 ^A	20	0.53 ^C	4.1	4.5	0.91		
Adi-10	14	21	0.68	4.0	4.2	0.95		

Koz-3 14 19 0.72 4.1 4.3 0.94

^ASignificantly different from the same Koz-3 treatment in the same activity (5% LSD).

^B Line x Inoculum interaction significantly different from Bd 21-3 (P < 0.05) in the screening activity. Line Bd 21-3 is used in this comparison, as it was included in every experiment.

^CLine x Inoculum interaction significantly different from Koz-3 (P < 0.05) in the confirmation activity.

Table S4. Comparison of phenotype measurements for T-DNA lines and the reference line Bd 21-3 in screening and confirmation experiments in *R. solani* AG8-inoculated (Rs) and control (C) treatments

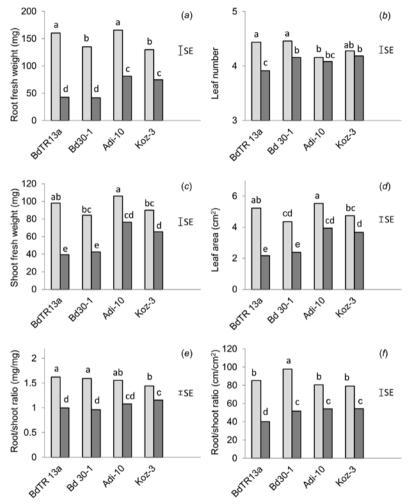
Means are followed by the ratio of inoculated to control treatment values. 'Rs only' root length ratio calculation is described in Table S2.

JJ line number	Tota (\sqrt{c})		t length	Lea	f num	lber	'Rs only' root length ratio
	Rs	С	Ratio	Rs	С	Ratio	
First screeni	ng acti	vity					
Bd 21-3	6.8	13	0.52	3.0	3.2	0.94	0.93
77-5	8.5	12	0.70 ^B	3.3	3.4	0.98	1.82 ^B
654-9	6.0	11	0.56	3.0	3.3	0.93	0.87
705-4	8.3	13	0.65	3.3	3.4	0.97	1.08
2426-11	8.0	14	0.57	3.2	3.3	0.96	0.93
2771-5	7.0	13	0.55	3.1	3.3	0.94	0.90
2892-10	6.1	13	0.48	3.0	3.3	0.91	0.98
3175-12	6.6	13	0.49	3.1	3.5	0.88	0.92
3400-2	6.3	14	0.46	3.5	3.6	0.98	0.42
3794-5	8.0	12	0.67 ^B	3.2	3.2	0.99	1.72

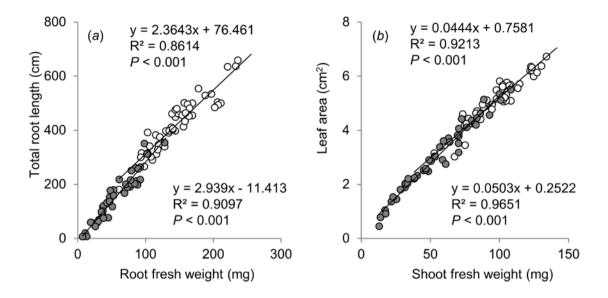
4774-6	5.5	10	0.56	2.9	3.3	0.90	1.15
5088-4	7.3	11 ^A	0.68 ^B	3.1	3.2	0.98	1.86

Second screening activity^C

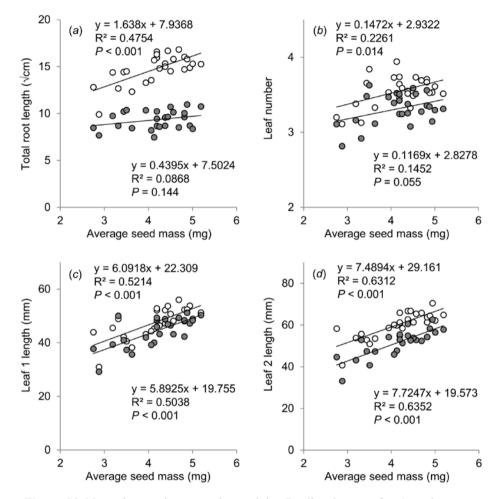
Bd 21-3	10	14	0.70	3.9	3.9	0.98	1.04
2596-2							1.23
2771-4							1.13
4243-11							0.85
7557-2							1.07
8634-6							1.42
8913-5							1.10
9212-15							1.65 ^B
9278-8							1.49
9840-9							1.21


Tota (\sqrt{cr}) Rs	n)	length	Leaf	f num	her	'Ps only' root	
Rs			Leaf number		001	'Rs only' root length ratio	
	С	Ratio	Rs	С	Ratio		
Third screening activity							
9.5	17	0.56	3.5	3.9	0.92	0.87	
11	19	0.57	3.9	4.2	0.93	1.10	
13	20	0.64	4.1	4.2	0.96	2.25	
						2.25	
						2.32	
						1.12	
						2.18	
						1.39	
						1.10	
						0.83	
9.2	20	0.45	3.7	4.1	0.90	1.45	
	g acti 9.5 11 13	g activity 9.5 17 11 19 13 20	g activity 9.5 17 0.56 11 19 0.57 13 20 0.64	g activity 9.5 17 0.56 3.5 11 19 0.57 3.9 13 20 0.64 4.1	<i>g activity</i> 9.5 17 0.56 3.5 3.9 11 19 0.57 3.9 4.2 13 20 0.64 4.1 4.2	<i>g activity</i> 9.5 17 0.56 3.5 3.9 0.92 11 19 0.57 3.9 4.2 0.93 13 20 0.64 4.1 4.2 0.96	

Confirmation activity


Bd 21-3	11	20	0.56	3.5	3.9	0.92
2596-2	14	20	0.67	3.8 ^A	4.0	0.96
2596-9	13	20	0.65	3.8 ^A	4.0	0.96

3794-2	11	21	0.51	$3.7^{\rm A}$ $4.0^{\rm A}$ 0.92
5088-2	12	18	0.66	3.8 ^A 3.9 0.97
5088-4	12	17 ^A	0.70 ^B	3.7 3.8 0.98
5088-5	13	20	0.66	3.8 ^A 3.9 0.96
9212-15	11	22	0.48	3.7 ^A 4.1 ^A 0.91


^A Significantly different from Bd 21-3 in the same activity (5% least significant difference). ^B Line x Inoculum interaction significantly different from Bd 21-3 (P < 0.05) in the same activity. ^C Values for the harvest at 26 days after sowing.

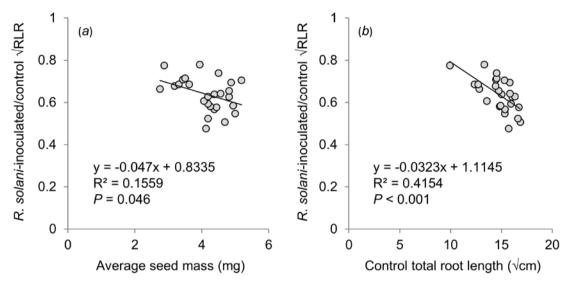

Figure S1. Natural accession screening activity. Predicted means for a) total root length, b) leaf number, c) leaf 1 length, and d) leaf 2 length, plotted against average seed mass for 26 natural accessions grown in control (white circles) and *R. solani* AG8-inoculated soil (grey circles).

Figure S2. Natural accession confirmation activity. Correlation between a) root fresh weight and root length, and b) shoot fresh weight and leaf area, for individual plants of four accessions grown in control (white circles) and *R. solani* AG8-inoculated (grey circles) treatments.

Figure S3. Natural accession screening activity. Predicted means for a) total root length, b) leaf number, c) leaf 1 length, and d) leaf 2 length, plotted against average seed mass for 26 natural accessions grown in control (white circles) and *R. solani* AG8-inoculated soil (grey circles).

Figure S4. Correlation in the natural accession screening experiments between transformed *R. solani* AG8/control root length ratio and a) average seed mass, and b) root length in the control treatment.

References

- Coates JC, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in *Arabidopsis*. *Proceedings of the National Academy of Sciences* 103 (5):1621-1626.
- Gilbert HJ, Stålbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. *Current Opinion in Plant Biology* 11 (3):338-348.

- Hayashi M, Takahashi H, Tamura K, Huang J, Yu L-H, Kawai-Yamada M, Tezuka T, Uchimiya H (2005) Enhanced dihydroflavonol-4reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. *Proceedings of the National Academy of Sciences* 102 (19):7020-7025.
- He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, *Wak1–5*, are expressed in specific organs of *Arabidopsis*. *Plant Molecular Biology* 39(6): 1189-1196.
- Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in *Arabidopsis thaliana*. *BMC Genomics* 9 (1):118
- Huynh QK, Hironaka CM, Levine EB, Smith CE, Borgmeyer JR, Shah DM (1992) Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. *Journal of Biological Chemistry* 267(10):6635-6640.
- Klepek YS, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005). Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H⁺-symport of numerous substrates, including *myo*-inositol, glycerol, and ribose. *The Plant Cell* 17(1):204-218.
- Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, *CaRING1*, is required for cell death and the salicylic acid-dependent defense response. *Plant Physiology* 156 (4):2011-2025.
- Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 *Arabidopsis* transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. *Molecular Plant-Microbe Interactions* 20 (8):900-911.
- Libertini E, Li Y, McQueen-Mason SJ (2004). Phylogenetic analysis of the plant endo-β-1, 4-glucanase gene family. *Journal of Molecular Evolution* 58(5):506-515.
- Liu F, Guo J, Bai P, Duan Y, Wang X, Cheng Y, Feng H, Huang L, Kang Z (2012) Wheat *TaRab7* GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. *PloS ONE* 7 (5):e37146

- Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge UI (2006). Identification and expression analysis of twelve members of the nucleobase–ascorbate transporter (NAT) gene family in *Arabidopsis thaliana*. *Plant and Cell Physiology* 47(10):1381-1393.
- Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. *International Journal of Molecular Sciences* 14(4):7302-7326.
- Reinders A, Panshyshyn JA, Ward JM (2005) Analysis of transport activity of *Arabidopsis* sugar alcohol permease homolog AtPLT5. *Journal of Biological Chemistry* 280(2):1594-1602.
- Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. *Plant and Cell Physiology* 46(9):1568-1577.
- Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LAJ, Runions J, Theodoulou FL, Foyer CH, Rogers HJ (2012) A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant, Cell & Environment 35 (2):418-429.
- Sato S, St-Pierre C, Bhaumik P, Nieminen J (2009) Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). *Immunological Reviews* 230 (1):172-187.
- Strasser R, Bondili JS, Vavra U, Schoberer J, Svoboda B, Glössl J, Léonard R, Stadlmann J, Altmann F, Steinkellner H, Mach L (2007) A unique β1,3-galactosyltransferase is indispensable for the biosynthesis of *N*-glycans containing Lewis a structures in *Arabidopsis thaliana*. *The Plant Cell* 19 (7):2278-2292.