Supplementary Material ## Salinity effects on chloroplast PSII performance in glycophytes and halophytes William J. Percey^A, Andrew McMinn^B, Jayakumar Bose^{A,C}, Michael C. Breadmore^D, Rosanne M. Guijt^E and Sergey Shabala^{A,F} ^ASchool of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia. ^BInstitute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Australia. ^CARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia. ^DAustralian Centre for Research on Separation Science (ACROSS) and School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia. ^ESchool of Medicine and Australian Centre for Research on Separation Science, University of Tasmania, Private Bag 34, Hobart 7001, Australia. FCorresponding author. Email: sergey.shabala@utas.edu.au **Fig. S1.** Optimisation of isolation media for chloroplasts. (A) Optimisation of KCl and ATP content. (B) Optimisation of K⁺ in the presence of ATP. All solutions were prepared to an osmolality of 570 mmol.kg⁻¹ with sucrose and adjusted to pH 7.1 using KOH. Mean \pm s.e. (n = 3 batches each containing leaves from three individual plants). **Fig. S2.** Summary for the optimisation of the chloroplast isolation media. All solutions were adjusted to an osmolality of 570 mmol kg⁻¹ and to pH 7 using sucrose and KOH respectively. Mean \pm s.e. (n = 3 batches each containing leaves from three individual plants).