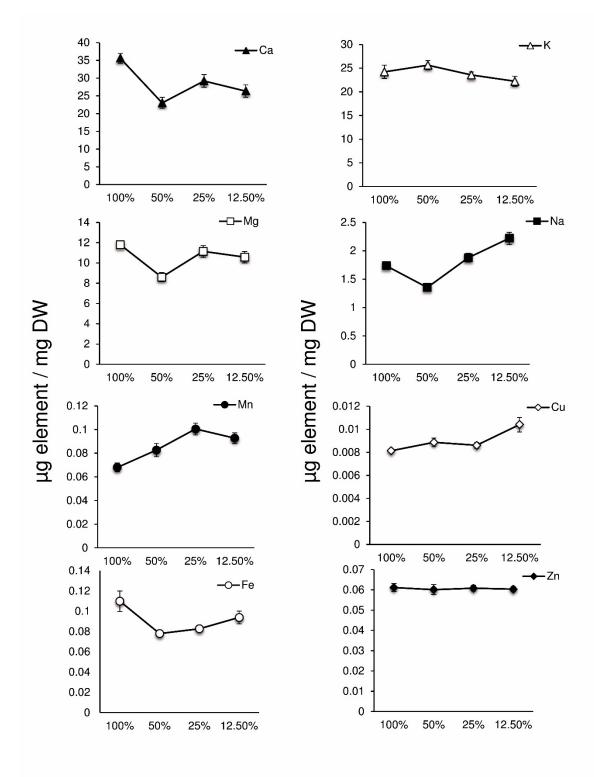
Supplementary Material

Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis


Lucia M. Acosta-Gamboa^A, Suxing Liu^A, Erin Langley^A, Zachary Campbell^A, Norma Castro-Guerrero^B, David Mendoza-Cozatl^{B,D} and Argelia Lorence^{A,C,D}

^AArkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA.

^BDivision of Plant Sciences, Christopher S Bond Life Sciences Centre, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA.

^cDepartment of Chemistry and Physics, Arkansas State University, PO Box 429, State University, A 72467, USA.

^DCorresponding authors. Emails: alorence@astate.edu; mendozacozatld@missouri.edu

Fig. S1. Concentration of elements in *Arabidopsis* leaves. Plants were grown under different water availability regimes and leaves were harvested 29 d after germination and

processed for elemental profiling by ICP-OES as previously described (Mendoza-Cozatl $\it et$ $\it al.$ 2014)