Supplementary Material

The effect of simulated microgravity on the Brassica napus seedling proteome

Andrej Frolov^A, Anna Didio^{A,B}, Christian Ihling^C, Veronika Chantzeva^D, Tatyana Grishina^B, Wolfgang Hoehenwarter^E, Andrea Sinz^C, Galina Smolikova^D, Tatiana Bilova^{D,F} and Sergei Medvedev^{D,F}

^ADepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, DE 06120, Halle/Saale, Germany.

^BDepartment of Biochemistry, St. Petersburg State University, RU 199034, St. Petersburg, Russian Federation.

^CDepartment of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, DE 06120, Halle/Saale, Germany.

^DDepartment of Plant Physiology and Biochemistry, St. Petersburg State University, RU 199034, St. Petersburg, Russian Federation.

^EProteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, DE 06120, Halle/Saale, Germany.

^FCorresponding authors. Emails: bilova.tatiana@gmail.com; s.medvedev@spbu.ru

Directory

Table S1 Instrument settings applied for ESI-Orbitrap-MS experiments	S- 3
Table S2 MaxQuant settings for database search and label-free relative quantification	S-5
Table S3 The effect of simulated microgravity on the development of seedlings	S-7
Table S4 Protein concentrations and recoveries obtained for <i>B. napus</i> seedlings by the	phenol
extraction procedure	S-8
Figure S1 Effect of clinorotation on the seedling root length	S-9
Figure S2 Effect of seed planting density on root length	S-10
Figure S3 SDS-PAGE electropherogram of individual protein samples	S-11
Figure S4 SDS-PAGE electropherogram of tryptic protein digests	S-12

Parameter	Setting			
MS conditions				
Ionization mode	Positive			
ESI emitter	outer/internal diameter 360/30 μm, 40 mm long (Thermo Fisher Scientific, Bremen, Germany)			
Analyzer	Orbitrap			
Resolution	120000			
Ion spray voltage (IS)	1900 V			
S-lens voltage	20 V			
Ion transfer tube temperature	275 °C			
Automatic gain control (AGC) target	2*10 ⁵			
Maximum injection time	50 ms			
Mass to charge ratio (m/z) range	300 - 1500			
I	MS/MS conditions			
Fragmentation	Collision activated dissociation			
Analyzer	Orbitrap			
Resolution	15000			
Isolation width	2.0 <i>m/z</i>			
Charge state rejected	1+, > 6+			
Fragmentation	HCD			
HCD collision energy	27%			
Automatic gain control (AGC)	$5*10^4$			

Table S1 Instrument settings applied for ESI-Orbitrap-MS experiments

target

Maximum injection time	200 ms
Dynamic exclusion repeat count	1
Dynamic exclusion duration	60 s
Dynamic exclusion mass width	$\pm 2 \text{ ppm}$

Parameter	Setting	
Search engine/Program	Andromeda/MaxQuant	
Protease	Trypsin	
Missed cleavage sites	3	
Modification Mass increment (Da) / amino acids		
Carbamidomethyl	+57.021 / C (fixed)	
Oxidation	+15.995 / M (variable)	
Multiplicity	1	
Match type	Match from and to	
First search peptide tolerance (ppm)	20	
Main search peptide tolerance (ppm)	4.5	
Isotope match tolerance (ppm)	2	
Centroid much tolerance (ppm)	8	
Minimal score for re-equilibration	70	
Intensity threshold (counts)	100	
Charge	2 - 7	
LFQ	none	
Maximal mumber of modifications per peptide	3	
Decoy mode	Revert	
Special amino acids	KR	
Maximal peptide mass	4600	
Minimal peptide length	7	
Max. peptide length for unspecific search	25	
PSM FDR/Protein FDR	0.05/0.05	

 Table S2 MaxQuant settings used for database search and label-free relative quantification

Site decoy fraction	0.05
Minimal peptide length/peptides	7/1
Min. razor plus unique peptides	1
Min. score/delta score for modified peptides	40/6
Min. ratio count	1
Peptides for quantification	Unique plus razor
FTMS MS/MS much tolerance (ppm)	20
FTMS MS/MS de novo tolerance (ppm)	10
FTMS MS/MS deisotoping tolerance (ppm)	7
FTMS top peaks per 100 Da	12

	Percentage of se	Percentage of non-		
Treatment/duration	normal morphology	abnormal morphology	seeds (%)	
Controls, 24 h	89 ± 6	7 ± 4	4 ± 2	
Controls, 48 h	86 ± 5	10 ± 4	4 ± 2	
Clinorotation, 24 h	84 ± 7	13 ± 5	3 ± 2	
Clinorotation, 48 h	79 ± 4 *	18 ± 4 *	3 ± 2	

Table S3 The effect of 3-D clinorotation on the development of *B.napus* seedlings

The seeds were germinated on 0.8 % agar for 24 h or 48 h in dark under 1.0 g or in a two- axial clinostat. After the completion of the treatment, the seeds were transferred on wet filter paper and grown till the age of eight days at 22°C. The morphological analysis was performed according the standards of the International Seed Testing Association (ISTA). The values are the means \pm standard deviations (n = 25 seeds per replicate). Asterisk denotes significant difference between the static controls and plants, clinorotated for 48 h, at the confidence level of p \leq 0.05.

Table S4 Protein concentrations and recoveries obtained for *B. napus* seedlings by the phenol

extraction procedure

Sample	Protein concentrations (mg/mL)		Average concentration	Protein yields (mg/g fresh	Total line density (AU)		
	Replicate 1	Replicate 2	(mg/mL)	weight)	in SDS-PAGE		
	Experiment 1						
Control 24 h- replicate 1	18.9	22.7	20.8	6.62	43100		
Control 24 h- replicate 2	10.9	14.2	12.6	3.78	45800		
Control 24 h- replicate 3	18.9	16.3	17.6	5.31	43200		
Clinorotation 24 h- replicate 1	15.6	18.5	17.1	5.03	42800		
Clinorotation 24 h- replicate 2	19.8	21.2	20.5	5.98	43500		
Clinorotation 24 h- replicate 3	12.8	14.8	13.8	3.99	41700		
Control 48 h- replicate 1	12.1	14.9	13.5	4.06	41900		
Control 48 h- replicate 2	8.7	12.3	10.5	3.09	41100		
Control 48 h- replicate 3	15.4	21.1	18.3	5.29	39800		
Clinorotation 48 h- replicate 1	13.4	16.8	15.1	4.39	40400		
Clinorotation 48 h- replicate 2	10.5	14.6	12.6	3.71	40600		
Clinorotation 48 h- replicate 3	12.4	13.2	12.8	3.79	37900		
		Experiment	2		•		
Control 24 h- replicate 1	14.3	14.5	14.4	2.15	39300		
Control 24 h- replicate 2	19	17.7	18.4	5.36	39000		
Control 24 h- replicate 3	7.4	7.8	7.6	2.21	37800		
Clinorotation 24 h- replicate 1	6.5	4.7	5.6	1.68	36000		
Clinorotation 24 h- replicate 2	9.1	11.2	10.2	2.99	35800		
Clinorotation 24 h- replicate 3	12.9	11.7	12.3	3.60	36800		
Control 48 h- replicate 1	24.4	23.7	24.1	7.00	37700		
Control 48 h- replicate 2	16.7	18.8	17.8	5.20	39000		
Control 48 h- replicate 3	14.3	16.4	15.4	4.54	40500		
Clinorotation 48 h- replicate 1	24.1	24.4	24.3	7.21	40000		
Clinorotation 48 h- replicate 2	22.5	21.6	22.1	6.54	39400		
Clinorotation 48 h- replicate 3	13.6	14.6	14.1	4.25	38600		

Controls 48 h

Clinostat 48 h

Figure S1 *B. napus* seedlings growing for 48 h under static control conditions (left) and in twoaxial clinostat (right). The roots of the microgravity-treated plants have higher length of the root hair and elongation zone.

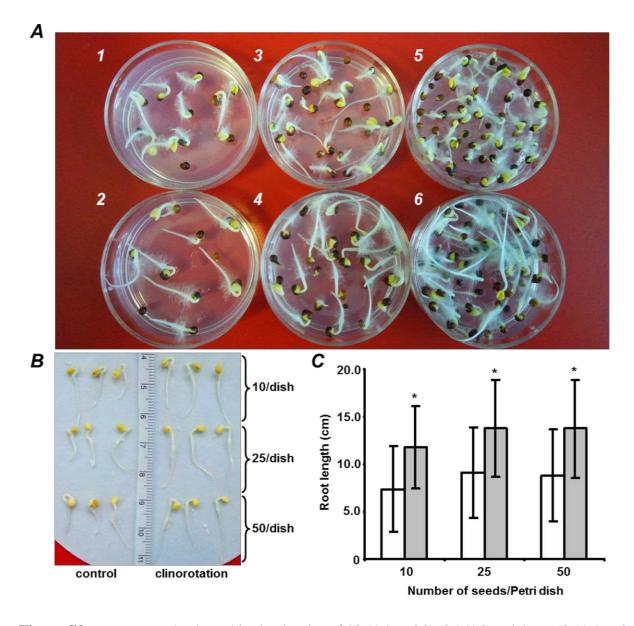
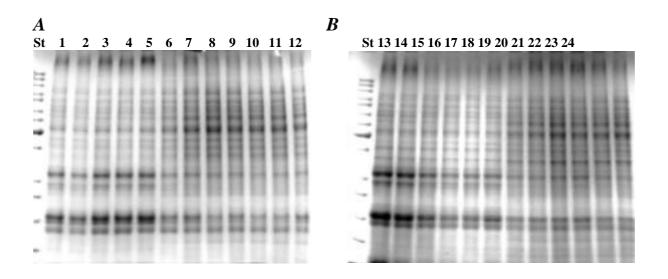



Figure S2 *B. napus* seeds planted in the density of 10 (A1 and 2), 25 (A3 and 4) or 50 (A5 and 6) seeds per Petri dish, and grown for 48 h under the static control conditions (A1, 3 and 5) and in two-axial clinostat (A2, 4 and 6). The root length of individual seedlings was measured (B) and inter-group comparison was performed (C). The difference between clinorotated seedlings and corresponding controls was significant at the confidence level of $p \le 0.01$ (marked with asterisk).

Figure S3 SDS-PAGE electropherogram of individual protein samples (5 μ g) isolated from one (1 – 6 and 13 – 18)- and two (7 – 12 and 19 – 24)-day old *B. napus* seedlings harvested in the experiments 1 (A) and 2 (B) after growing in two-axial clinostat (4 – 6, 10 – 12, 16 – 18, and 22 – 24) and under the static control conditions (1 – 3, 7 – 9, 13 – 15, and 19 – 21). The gels were stained with colloidal Coomassie Blue G250 for 2 h, washed for 24 h with at least five changes of water and documented with ChemiDoc.