Supplementary Material Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment Getnet D. Adem^A, Stuart J. Roy^{B,C}, Yuqing Huang^D, Zhong-Hua Chen^D, Feifei Wang^A, Meixue Zhou^A, John P. Bowman^A, Paul Holford^D and Sergey Shabala^{A,E} ^ASchool of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia. ^BAustralian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia. ^CSchool of Agriculture, Food and Wine, University of Adelaide, Private Mail Bag 1, Glen Osmond, SA 5064, Australia. ^DSchool of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia. ^ECorresponding author. Email: sergey.shabala@utas.edu.au **Fig. S1.** Representative confocal images of mesophyll cells stained by BCECF in the control of wild type (A), OE-1(B), OE-2(C) and OE-3(D) lines are shown. Lines are drawn across the region of interest (ROI) in a presentative mesophyll cell of wild type (E), OE-1(F), OE-2(G) and OE-3(H) for BCECF. **Fig. S2.** Representative confocal images of mesophyll cells stained by BCECF in the salt-treated barley of wild type (A), OE-1(B), OE-2(C) and OE-3(D) lines are shown. Lines are drawn across the region of interest (ROI) in a presentative mesophyll cell of wild type (E), OE-1(F), OE-2(G) and OE-3(H) for BCECF.