Supplementary Material ## Differences in hydraulic traits of grapevine rootstocks are not conferred to a common *Vitis vinifera* scion Felipe H. Barrios-Masias^A, Thorsten Knipfer^B, M. Andrew Walker^B and Andrew J. McElrone^{B,C,D} ^ADepartment of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, NV 89557, USA. ^BDepartment of Viticulture and Enology, University of California, Davis, CA 95616, USA. ^CUnited States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA. ^DCorresponding author. Email: ajmcelrone@ucdavis.edu **Fig. S1.** Pot water content (A), stem water potential (Ψ_{stem} ; B), and the relationship of pot water content and Ψ_{stem} (C) of Cabernet Sauvignon grafted on *V. champinii* (Ram\CS; black squares) and *V. riparia* (Rip\CS; white circles) during an eight-day dry down period. For each rootstock\scion combination, days with different means are shown by different letters (Ram\CS = a to e; Rip\CS = x to z). **Fig. S2.** Stomatal conductance (g_s), photosynthetic rate (P_n) and intrinsic water use efficiency (WUE_i) of Cabernet Sauvignon grafted on *V. champinii* (Ram\CS; black squares) and *V. riparia* (Rip\CS; white circles) during an eight-day dry down period. For each rootstock\scion combination, days with different means are shown by different letters (Ram\CS = a to c; Rip\CS = x to z).