CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 55(7)

Fire regime (recency, interval and season) changes the composition of spinifex (Triodia spp.)-dominated desert dunes

Boyd R. Wright A, Peter J. Clarke A B

A Botany, School of Rural and Environmental Sciences, University of New England, Armidale, NSW 2351, Australia.
B Corresponding author. Email: pclarke1@une.edu.au
PDF (254 KB) $25
 Export Citation


Between 2000 and 2002, central Australia experienced the largest fire season in three decades when ~500 000 km2 burned. The effects of these and preceding wildfires in the 1980s on spinifex (Triodia spp.) sand-ridge plant communities were examined at 38 sites in central Australia. We used both multivariate and univariate techniques to assess floristic differences among sites of contrasting time-since-fire, fire season and fire interval. Time-since-fire had a consistent floristic influence across the landscape, with increased abundances of ephemeral grasses and forbs and Triodia seedlings, and species richness soon after fire but decreasing long after fire. Fire season had little effect on most functional groups of plants, although seedlings of woody species were significantly more abundant following summer than winter fires. Likewise, recent short fire intervals appeared to have little impact on the population dynamics of most functional groups, although some transient effects were observed on abundances of ephemeral forbs, Triodia seedlings and herbaceous clonal species. Long-term woody species abundances appeared to be affected by short fire intervals in the 1980s when repeated fires seemed to stimulate recruitment of some resprouting species. The present study highlighted the relative stability of spinifex vegetation types in the face of landscape-scale pyric perturbation, but emphasised that localised shifts in the composition and structure of the plant community may occur under certain fire regimes.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015