CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 56(5)

TURNER REVIEW No. 18. Greenhouse gas fluxes from natural ecosystems

Ram C. Dalal A B, Diane E. Allen A

A Department of Natural Resources and Water, 80 Meiers Road, Indooroopilly, Qld 4068, Australia.
B Corresponding author. Email: ram.dalal@nrw.qld.gov.au
PDF (684 KB) $25
 Export Citation


Besides water vapour, greenhouse gases CO2, CH4, O3 and N2O contribute ~60%, 20%, 10% and 6% to global warming, respectively; minor contribution is made by chlorofluorocarbons and volatile organic compounds (VOC). We present CO2, CH4 and N2O fluxes from natural and relatively unmanaged soil–plant ecosystems (the ecosystems minimally disturbed by direct human or human-induced activities). All natural ecosystems are net sinks for CO2, although tundra and wetlands (including peatlands) are large sources of CH4, whereas significant N2O emissions occur mainly from tropical and temperate forests. Most natural ecosystems decrease net global warming potential (GWP) from –0.03 ± 0.35 t CO2-e ha–1 y–1 (tropical forests) to –0.90 ± 0.42 t CO2-e ha–1 y–1 (temperate forests) and –1.18 ± 0.44 t CO2-e ha–1 y–1 (boreal forests), mostly as CO2 sinks in phytobiomass, microbial biomass and soil C. But net GWP contributions from wetlands are very large, which is primarily due to CH4 emissions. Although the tropical forest system provides a large carbon sink, the negligible capacity of tropical forests to reduce GWP is entirely due to N2O emissions, possibly from rapid N mineralisation under favourable temperature and moisture conditions. It is estimated that the natural ecosystems reduce the net atmospheric greenhouse gas (GHG) emissions by 3.55 ± 0.44 Gt CO2-e y–1 or ~0.5 ppmv CO2-e y–1, hence, the significant role of natural and relatively unmanaged ecosystems in slowing global warming and climate change. However, the impact of increasing N deposition on natural ecosystems is poorly understood, and further understanding is required regarding the use of drainage as a management tool, to reduce CH4 emissions from wetlands and to increase GHG sink from the restoration of degraded lands, including saline and sodic soils. Data on GHG fluxes from natural and relatively unmanaged ecosystems are further compounded by large spatial and temporal heterogeneity, limited sensitivity of current instruments, few and poor global distribution of monitoring sites and limited capacity of models that could integrate GHG fluxes across ecosystems, atmosphere and oceans and include feedbacks from biophysical variables governing these fluxes.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014