CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern hemisphere botanical ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 62(3)

Comparative floral ontogeny of single-flowered and double-flowered phenotypes of Alcea rosea (Malvaceae)

Somayeh Naghiloo A C, Zahra Esmaillou B and Mohammad Reza Dadpour B

A Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
B Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
C Corresponding author. Email: some_naghiloo@yahoo.com

Australian Journal of Botany 62(3) 217-228 http://dx.doi.org/10.1071/BT14070
Submitted: 11 April 2014  Accepted: 27 May 2014   Published: 2 July 2014

PDF (2 MB) $25
 Export Citation

A comparative study of floral ontogeny in single- and double-flowered Alcea rosea L. was conducted using epi-illumination light microscopy. In both floral types, floral differentiation starts with the appearance of three epicalyx lobes, which subsequently subdivide to produce a 7–10-parted epicalyx. Five sepals appear then in a unidirectional or possibly spiral sequence. In single flowers, a corolla-androecium common primordium is formed and subsequently differentiated into five androecial sectors (= primary androecial primordia). Petals are developed at the base of the androecial sectors and secondary androecial primordia are initiated centrifugally in two rows on each sector. Later, tertiary androecial primordia are formed by the subdivision of secondary androecial primordia, which then differentiate into androecial units. Three types of double flowers were identified regarding androecial development. The first type of double flowers shows a more or less disorganised nature. However, 10 proliferation zones can be indentified in the proximal and distal tips of the androecial sectors. In the second and third types of double flowers, androecial development follows similar developmental pathways to that of single flowers. However, in second-type double flowers, the secondary androecial primordia differentiate into petals and the stamens then develop from the free space between the two rows of secondary androecial primordia. In third-type double flowers, after complete primordial partitioning, some primordia on the marginal parts of each androecial sector develop into petaloids or intermediate appendages. The gynoecium appears similarly in both floral types as numerous congenitally united carpel primordia. The double-flowered phenotypes of Alcea appear to fit the criteria for homoheterotopy with complete or partial replacement of stamens with petals, as well as for neoheterotopy, with the formation of stamens in a new position. Based on mutant phenotypes, it is suggested that different functions possibly contribute to the proliferation and differentiation of common primordia.

Additional keywords: androecial sectors, homoheterotopy, neoheterotopy.


Baum DA, Donoghue MJ (2002) Transference of function, heterotopy and the evolution of plant development. In ‘Developmental genetics and plant evolution’. (Eds QCB Cronk, RM Bateman, JA Hawkins) pp. 52–69. (Taylor & Francis: London)

Bayer C (1999) The bicolor unit – homology and transformation of an inflorescence structure unique to core Malvales. Plant Systematics and Evolution 214, 187–198.
CrossRef |

Bayer C, Kubitzki K (2003) Malvaceae. In ‘Flowering plants, dicotyledons: Malvales, Capparales, and non-betalain Caryophyllales’. (Eds K Kubitzki, C Bayer) pp. 225–311. (Springer-Verlag: Berlin)

Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell 72, 85–95.
CrossRef | CAS | PubMed |

Charlton WA, Macdonald AD, Posluszny U, Wilkins CP (1989) Additions to the technique of epi-illumination light microscopy for the study of floral and vegetative apices. Canadian Journal of Botany 67, 1739–1743.
CrossRef |

Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37.
CrossRef | CAS | PubMed |

Corner EJH (1958) Transference of function. Botanical Journal of the Linnean Society 56, 33–40.
CrossRef |

Dadpour MR, Grigorian W, Nazemieh A, Valizadeh M (2008) Application of epi-illumination light microscopy for study of floral ontogeny in fruit trees. International Journal of Botany 4, 49–55.
CrossRef |

Dadpour MR, Movafeghi A, Grigorian W, Omidi Y (2011a) Determination of floral initiation in Malus domestica: a novel morphogenetic approach. Biologia Plantarum 55, 243–252.
CrossRef | CAS |

Dadpour MR, Naghiloo S, Aliakbari M, Panahirad S, Movafeghi A (2011b) A comparison of early floral ontogeny in wild-type and double-flowered phenotypes of Syringa vulgaris. Scientia Horticulturae 127, 535–541.
CrossRef |

Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Organisms, Diversity & Evolution 6, 257–293.
CrossRef |

Galimba KD, Tolkin TR, Sullivan AM, Melzer R, Theißen G, Di Stilio VS (2012) Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences of the United States of America 109, E2267–E2275.
CrossRef | CAS | PubMed |

Gustafson-Brown C, Savidge B, Yanosky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131–143.
CrossRef | CAS | PubMed |

Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Canadian Journal of Botany 67, 2922–2936.
CrossRef |

Hufford L (1998) Early development of androecia in polystemonous Hydrangeaceae. American Journal of Botany 85, 1057–1067.
CrossRef | CAS | PubMed |

Janka H, von Balthazar M, Alverson WS, Baum DA, Semir J, Bayer C (2008) Structure, development and evolution of the androecium in Adansonieae (core Bombacoideae, Malvaceae s.l.). Plant Systematics and Evolution 275, 69–91.
CrossRef |

Jenny M (1989) Organstellung und Androeceumentwicklung ausgewählter Sterculiaceae. Abstract 26. In ‘9th symposium morphology, anatomy and systematic, Wien 26’.

Kirchoff BK (1991) Homeosis in the flowers of the Zingiberales. American Journal of Botany 78, 833–837.
CrossRef |

Lehmann N, Sattler R (1993) Homeosis in floral development of Sanguinaria canadensis and S. canadensis ‘Multiplex’ (Papaveraceae). American Journal of Botany 80, 1323–1335.
CrossRef |

Lehmann N, Sattler R (1994) Floral development and homeosis in Actaea rubra (Ranunculaceae). International Journal of Plant Sciences 155, 658–671.
CrossRef |

Lönnig WE, Saedler H (1994) The homeotic Macho mutant in Antirrhinum majus reverts to wild-type or mutates to the homeotic plena phenotype. Molecular & General Genetics 245, 636–643.
CrossRef |

Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes & Development 8, 745–756.
CrossRef | CAS |

MacIntyre JB, Lacroix C (1996) Comparative development of perianth and androecial primordia of the single flower and the homeotic double-flowered mutant in Hibiscus rosa-sinensis (Malvaceae). Canadian Journal of Botany 74, 1871–1882.
CrossRef |

Meyerowitz EM, Smyth DR, Bowman JL (1989) Abnormal flowers and pattern formation in floral development. Development 106, 209–217.

Rasmussen N, Green PB (1993) Organogenesis in flowers of the homeotic green pistillate mutant of tomato (Lycopersicon esculentum). American Journal of Botany 80, 805–813.
CrossRef |

Reynolds J, Tampion J (1983) ‘Double flowers: a scientific study.’ (Van Nostrand Reinhold: New York)

Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. International Journal of Plant Sciences 164, S225–S235.
CrossRef |

Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Systematic Botany 33, 301–325.
CrossRef |

Ronse De Craene LP, Clinckemaillie D, Smets EF (1993) Stamen-petal complexes in Magnoliatae. Bulletin du Jardin Botanique National de Belgique 62, 97–112.
CrossRef |

Rudall PJ, Bateman RM (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biological Reviews of the Cambridge Philosophical Society 77, 403–441.
CrossRef | PubMed |

Sattler R (1988) Homeosis in plants. American Journal of Botany 75, 1606–1617.
CrossRef |

van Heel WA (1966) Morphology of the androecium in Malvales. Blumea 13, 177–394.

van Heel WA (1978) Morphology of the pistil in Malvaceae – Ureneae. Blumea 24, 123–137.

van Heel WA (1995) Morphology of the gynoecium of Kitaibelia vitifolia Willd. and Malope trifida L. (Malvaceae-Malopeae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 117, 485–493.

von Balthazar M, Alverson WS, Schönenberger J, Baum DA (2004) Comparative floral development and androecium structure in Malvoideae (Malvaceae s.l.). International Journal of Plant Sciences 165, 445–473.
CrossRef |

von Balthazar M, Schönenberger J, Alverson WS, Janka H, Bayer C, Baum DA (2006) Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Systematics and Evolution 260, 171–197.

Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78, 203–209.
CrossRef | CAS | PubMed |

Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proceedings of the National Academy of Sciences, USA 109, 13 452–13 457.
CrossRef | CAS |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016