CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Emu   
  Journal of BirdLife Australia
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Rowley Review Series
Sample Issue
For Authors
General Information
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with BirdLife
blank image
facebook TwitterIcon LinkedIn

red arrow Connect with CP
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 114(4)

New Guinean passerines have globally small clutch-sizes

Benjamin G. Freeman A B C and Nicholas A. Mason A B

A Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14850, USA.
B Cornell Laboratory of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.
C Corresponding author. Email: bgf27@cornell.edu

Emu 114(4) 304-308 http://dx.doi.org/10.1071/MU14023
Submitted: 12 November 2013  Accepted: 21 April 2014   Published: 1 August 2014

PDF (215 KB) $25
 Supplementary Material
 Export Citation

Tropical birds have small clutches. The mechanisms responsible for generating this pattern remain debated, and are typically examined by comparing tropical species, with small clutches, to their temperate counterparts, with large clutches. However, variation in clutch-size among tropical regions is seldom considered. We show that New Guinean forest passerines lay markedly smaller clutches (n = 102 species; mean ± s.d. = 1.52 ± 0.48) than other tropical avifaunas. Whereas tropical species commonly lay two-egg clutches, a substantial number of New Guinean passerines appear to solely (38%) or frequently (24%) lay single-egg clutches. We used phylogenetic comparative methods to demonstrate that New Guinean passerines lay significantly smaller clutches than congeneric South-East Asian species. We also show that reductions in clutch-size have occurred multiple times among New Guinean passerines, suggesting phylogenetic constraint does not explain this pattern. Instead, current environmental factors, including high levels of parasitism or predation, may explain why New Guinean passerines lay small clutches. We conclude that variation in clutch-size between tropical regions offers a valuable opportunity to test drivers of this variation, such as parasitism and predation, originally developed within a tropical–temperate framework.


Beehler, B. M., Pratt, T. K., and Zimmerman, D. A. (1986). ‘Birds of New Guinea.’ (Princeton University Press: Princeton, NJ.)

Blomberg, S. P., Garland, T., and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.
CrossRef | PubMed |

Boles, W. E. (2007). Family Pachycephalidae (Whistlers). In ‘Handbook of the Birds of the World. Vol 12: Picathartes to Tits and Chickadees’. (Eds J. del Hoyo, A. Elliott and D. A. Christie.) pp. 374–437. (Lynx Edicions: Barcelona.)

Cockburn, A. (2003). Cooperative breeding in oscine passerines: does sociality inhibit speciation? Proceedings of the Royal Society of London – B. Biological Sciences 270, 2207–2214.
CrossRef |

Cockburn, A. (2006). Prevalence of different modes of parental care in birds. Proceedings of the Royal Society of London – B. Biological Sciences 273, 1375–1383.
CrossRef |

Cody, M. L. (1966). A general theory of clutch size. Evolution 20, 174–184.
CrossRef |

Dumbacher, J. P., Beehler, B. M., Spande, T. F., Garraffo, H. M., and Daly, J. W. (1992). Homobatrachotoxin in the genus Pitohui: chemical defense in birds? Science 258, 799–801.
CrossRef | CAS | PubMed |

Dumbacher, J. P., Wako, A., Derrickson, S. R., Samuelson, A., Spande, T. F., and Daly, J. W. (2004). Melyrid beetles (Choresine): a putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proceedings of the National Academy of Sciences of the United States of America 101, 15857–15860.
CrossRef | CAS | PubMed |

Dumbacher, J. P., Deiner, K., Thompson, L., and Fleischer, R. C. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics and Evolution 49, 774–781.
CrossRef | CAS | PubMed |

Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 1–15.
CrossRef |

Freckleton, R. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology 22, 1367–1375.
CrossRef | CAS | PubMed |

Frith, C., and Frith, D. (2009). Family Paradisaeidae (Birds of Paradise). In ‘Handbook of the Birds of the World. Vol. 14: Bush-shrikes to Old World Sparrows’. (Eds J. del Hoyo, A. Elliott and D. A. Christie.) pp. 404–493. (Lynx Edicions: Barcelona.)

Garamszegi, L. Z., and Møller, A. P. (2010). Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biological Reviews of the Cambridge Philosophical Society 85, 797–805.
| PubMed |

Ghalambor, C. K., and Martin, T. E. (2001). Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497.
CrossRef | CAS | PubMed |

Gill, F., and Donsker, D. (Eds) (2013). ‘IOC World Bird List (v 3.4).’ Available at http://www.worldbirdnames.org [Accessed 5 June 2013].

Green, D. J., and Cockburn, A. (1999). Life history and demography of an uncooperative Australian passerine, the Brown Thornbill. Australian Journal of Zoology 47, 633–649.
CrossRef |

Harrison, C., and Frith, C. (1970). Nests and eggs of some New Guinea birds. Emu 70, 173–178.
CrossRef |

Irestedt, M., and Ohlson, J. I. (2008). The division of the major songbird radiation into Passerida and ‘core Corvoidea’ (Aves: Passeriformes) – the species tree vs. gene trees. Zoologica Scripta 37, 305–313.
CrossRef |

Jetz, W., Sekercioglu, C. H., and Bohning-Gaese, K. (2008). The worldwide variation in avian clutch size across species and space. PLoS Biology 6, e303.
CrossRef |

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., and Mooers, A. O. (2012). The global diversity of birds in space and time. Nature 491, 444–448.
CrossRef | CAS | PubMed |

Lack, D. (1947). The significance of clutch-size. Ibis 89, 302–352.
CrossRef |

Magrath, R. D., Leedman, A. W., Gardner, J. L., Giannasca, A., Nathan, A. C., Yezerinac, S. M., and Nicholls, J. A. (2000). Life in the slow lane: reproductive life history of the White-browed Scrubwren, an Australian endemic. Auk 117, 479–489.
CrossRef |

Martin, T. E., Martin, P., Olson, C., Heidinger, B., and Fontaine, J. (2000). Parental care and clutch sizes in North and South American birds. Science 287, 1482–1485.
CrossRef | CAS | PubMed |

Martin, T. E., Bassar, R., Bassar, S., Fontaine, J., Lloyd, P., Mathewson, H., Niklison, A., and Chalfoun, A. (2006). Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species. Evolution 60, 390–398.
CrossRef | PubMed |

Martins, E. P., and Hansen, T. F. (1997). Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149, 646–667.
CrossRef |

Mkongewa, V. J., Newmark, W. D., and Stanley, T. R. (2013). Breeding biology of an Afrotropical forest understory bird community in northeastern Tanzania. Wilson Journal of Ornithology 125, 260–267.
CrossRef |

Møller, A. P., and Liang, W. (2013). Tropical birds take small risks. Behavioral Ecology 24, 267–272.
CrossRef |

Møller, A. P., Arriero, E., Lobato, E., and Merino, S. (2009). A meta-analysis of parasite virulence in nestling birds. Biological Reviews of the Cambridge Philosophical Society 84, 567–588.
CrossRef | PubMed |

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877–884.
CrossRef | CAS | PubMed |

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
CrossRef | CAS | PubMed |

Pienaar, J., Ilany, A., Geffen, E., and Yom-Tov, Y. (2013). Macroevolution of life-history traits in passerine birds: adaptation and phylogenetic inertia. Ecology Letters 16, 571–576.
CrossRef | PubMed |

Pinheiro, J., Bates, D., DebRoy, S. S., Sarkar, D., and R Development Core Team (2014). Nlme: linear and nonlinear mixed effects models. R Package, ver. 3.1-117.

R Development Core Team (2014). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria.)

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
CrossRef |

Revell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution 4, 754–759.
CrossRef |

Skutch, A. F. (1985). Clutch size, nesting success, and predation on nests of Neotropical birds, reviewed. Ornithological Monographs 36, 575–594.
CrossRef |

Yom-Tov, Y. (1987). The reproductive rates of Australian passerines. Wildlife Research 14, 319–330.
CrossRef |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016