Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Phytolith analysis of Cyperaceae from the Pampean region, Argentina

Mariana Fernández Honaine A C D , Alejandro F. Zucol B C and Margarita L. Osterrieth A
+ Author Affiliations
- Author Affiliations

A Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 722, Correo Central, (7600) Mar del Plata, Buenos Aires, Argentina.

B Laboratorio de Paleobotánica, Centro de Investigaciones Científicas (CICYTTP–CONICET), Dr Materi y España (E3105BWA) Diamante, Entre Ríos, Argentina.

C Comisión Nacional de Investigaciones Científicas y Tecnológicas (CONICET).

D Corresponding author. Email: fhonaine@mdp.edu.ar

Australian Journal of Botany 57(6) 512-523 https://doi.org/10.1071/BT09041
Submitted: 21 February 2009  Accepted: 20 August 2009   Published: 9 November 2009

Abstract

Cyperaceae, along with Poaceae, is the main silica accumulator. Although the anatomical-taxonomic and palaeobotanical relevance of phytoliths has been well established, there are no studies that deal with the qualitative and quantitative aspects of the phytolith production or differentiate phytoliths from the different organs in Cyperaceae. Toward the construction of a detailed database of phytolith production, we describe in the present paper the phytoliths of leaves, culms and fruits of Cyperaceae from Pampean region (Argentina). Phytoliths were extracted by a calcination technique. Qualitative and quantitative characters and percentages of phytolith morphotypes were subject to principal component analysis to analyse their taxonomic relevance. For some sedges, values of phytolith content and a comparative analysis of leaves, culms and fruit phytoliths are presented here for the first time. Diverse tissues such as epidermis, xylem, parenchyma and sclerenchyma produced phytoliths. The most abundant morphotypes were conical phytoliths, which showed differences in the base shape and in their size between organs. Leaf/culm cones have a rounded, rectangular or square base; typical fruit cones have a polygonal base and they are bigger and more robust. PCA showed that quantitative and qualitative characters of cones, along with the percentages of morphotypes, allowed group distinction.


Acknowledgements

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 1700, PICT 07 13864), Universidad Nacional de Mar del Plata (EXA 292/04) and CONICET (postgraduate fellowship to M. F. H.). We greatly thank Professor Rosa E. Guaglianone for the help in the identification and selection of the species, for the extensive bibliography and for the comments and suggestions on the first version of the manuscript, and Dr A. M. Avalos for the corrections and suggestions to the text.


References


Alexandre A, Meunier J, Lezine A, Vincens A, Schwartz D (1997) Phytoliths: indicators of grasslands dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 213–229.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barboni D, Bonnefille R, Alexandre A, Meunier JD (1999) Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 87–100.
Crossref | GoogleScholarGoogle Scholar | open url image1

Blinnikov MS (2005) Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology 135, 71–98.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bonomo M, Zucol AF, Gutierrez Tellez B, Coradeghini A, Vigna MS (2009) Late Holocene palaeoenvironments of the Nutria Mansa 1 archaeological site, Argentina. Journal of Paleolimnology 41, 273–296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borba-Roschel M, Alexandre A, Varajão AFDC, Meunier JD, Varajão CAC, Colin F (2006) Phytoliths as indicators of pedogenesis and paleoenvironmental changes in the Brazilian cerrado. Journal of Geochemical Exploration 88, 172–176.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Borrelli N (2008) Biomineralizaciones de sílice y calcio. Su rol en la biogeoquímica de Argiudoles típicos del sudeste bonaerense. PhD Thesis. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina.

Borrelli N, Osterrieth M, Marcovecchio J (2008) Interrelations of vegetal cover, silicophytoliths content and pedogenesis of Typical Argiudolls of the Pampean Plain, Argentina. Catena 75, 146–153.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Browning J, Gordon-Gray KD (1995) Studies in Cyperaceae in southern Africa 26: glume epidermal silica deposits as a character in generic delimitation of Costularia and Cyathocoma as distinct from Tetraria and other allies. South African Journal of Botany 61, 66–71. open url image1

Bruhl JJ (1995) Sedge Genera of the world: relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8, 125–305.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bruhl JJ, Watson L, Dallwitz MJ (1992) Genera of Cyperaceae: interactive identification and information retrieval. Taxon 41, 225–234.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chevalier A (2008) Early Holocene human adaptation in the Central Andes: what the phytoliths can tell us? In ‘Interdisciplinary nuances in phytoliths and other microfossil studies’. (Eds MA Korstanje, MP Babot) pp. 149–160. (BAR International Series S1870: Oxford)

Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles 16, 1121–1129.
Crossref | GoogleScholarGoogle Scholar | open url image1

Duval-Jouve MJ (1873) Sur une forme de cellules épidermiques qui paraissent propres aux Cypéracées. Bulletin Société Botanique de France 20, 91–95. open url image1

Fernández Honaine M, Zucol A, Osterrieth M (2006) Phytolith assemblage and systematic association in grassland species of the SE Pampean Plains, Argentina. Annals of Botany 98, 1155–1165.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fernández Honaine M , Bernava Laborde V , Zucol A (2008) Contenido de sílice en gramíneas del pastizal nativo del sudeste bonaerense. In ‘Interdisciplinary nuances in phytoliths and other microfossil studies’. (Eds MA Korstanje, MP Babot) pp. 57–63. (BAR International Series S1870: Oxford)

Gallego L, Distel RA, Camina R, Rodriguez Iglesias RM (2004) Soil phytoliths as evidence for species replacement in grazed rangelands of Central Argentina. Ecography 27, 725–732.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gordon-Gray KD, van Laren L, Bandu V (1978) Silica deposits in Rhynchospora species (Cyperaceae). Proceedings Electron Microscopy Society of Southern Africa 8, 83–84. open url image1

Iriarte J, Paz EA (2009) Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International 193, 99–123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Iriarte J (2006) Vegetation and climate change since 14,810 14C yr B.P. in southeastern Uruguay and implications for the rise of early Formative societies. Quaternary Research 65, 20–32.
Crossref | GoogleScholarGoogle Scholar | open url image1

Labouriau LG (1983) Phytolith work in Brazil: a minireview. Phytolitharien Newsletter 2, 6–10. open url image1

Lanning FC, Eleuterius LN (1989) Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany 63, 395–410. open url image1

Madella M, Alexandre A, Ball T (2005) International Code for Phytolith Nomenclature 1_0. Annals of Botany 96, 253–260.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mehra PN, Sharma OP (1965) Epidermal silica cells in the Cyperaceae. Botanical Gazette (Chicago, Ill.) 126, 53–58.
Crossref | GoogleScholarGoogle Scholar | open url image1

Menapace FJ, Wujek DE (1987) The systematic significance of achene micromorphology in Carex retrorsa (Cyperaceae). Brittonia 39, 278–283.
Crossref | GoogleScholarGoogle Scholar | open url image1

Metcalfe CR (1971) ‘Anatomy of the monocotyledons. V. Cyperaceae.’ (Clarendon Press: Oxford)

Ollendorf AL (1992) Toward a classification scheme of sedge (Cyperaceae) phytoliths. In ‘Phytolith Systematics’. (Eds G Rapp, SC Mulholland) pp. 91–111. (Plenum Press: New York)

Piperno DR (1988) ‘Phytolith analysis: an archaeological and geological perspective.’ (Academic Press: San Diego, CA)

Ragonese AM, Guaglianone ER, Dizeo de Strittmatter C (1984) Desarrollo del pericarpio con cuerpos de sílice de dos especies de Rhynchospora Vahl. (Cyperaceae). Darwiniana 25, 27–41. open url image1

Rovner I (1971) Potential of opal phytolith for use in paleoecological reconstruction. Quaternary Research 1, 343–359.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schuyler AE (1971) Scanning electron microscopy of achene epidermis in species of Scirpus (Cyperaceae) and related genera. Proceedings of the Academy of Natural Sciences of Philadelphia 123, 29–52. open url image1

Toivonen H, Timonen T (1976) Perigynium and achene epidermis in some species of Carex, subg. Vignea (Cyperaceae), studied by scanning electron microscopy. Annales Botanici Fennici 13, 49–59. open url image1

Wilczek E (1892) Beiträge zur Kenntniss des Baues der Frucht und des Samens der Cyperaceen. Botanisches Centralblatt 51, 129–138, 193–201. open url image1