Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Leaf and culm silicification of Pampas grass (Cortaderia selloana) developed on different soils from Pampean region, Argentina

Mariana Fernández Honaine A B C D , Natalia L. Borrelli A B C , Margarita Osterrieth A B and Luis del Rio A
+ Author Affiliations
- Author Affiliations

A Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata-CIC, CC 722, 7600 Mar del Plata, Argentina.

B Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-CONICET, CC 1260, 7600 Mar del Plata, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET).

D Corresponding author. Email: fhonaine@mdp.edu.ar

Australian Journal of Botany 65(1) 1-10 https://doi.org/10.1071/BT16154
Submitted: 21 July 2016  Accepted: 4 November 2016   Published: 12 December 2016

Abstract

Amorphous silica accumulation in grasses is widely described in numerous species; however, work done in relation to the factors affecting this accumulation in the tissues and different type of cells, is still incipient. Here, we analysed a perennial tussock grass, Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn. (Pampas grass), a native and widely spread species from South America, which is also considered an invasive plant in many regions of the world. We analysed the relation between silicification process, soil type and environment, and anatomical features. Silicophytolith content and distribution in plants was analysed through calcination and staining techniques and SEM-EDAX analyses. Silicophytolith content was higher in leaves (2.48–5.54% DW) than in culms (0.29–0.43% DW) and values were similar to other tussock grasses. A relationship between the habit of a grass species and the potential maximum content of amorphous silica is suggested. Plants grown in soils from modified environments with high silica content (Anthrosol and Tecnosol) produced a higher content of amorphous silica. In leaves, the distribution of silicified cells was conditioned by leaf xeromorphic features. Soil Si content and environmental conditions (radiation, disturbance) are more relevant in silicification process than phenological factors. Within leaves, the accumulation of amorphous silica is conditioned by anatomy and transpiration.

Additional keywords: amorphous silica, biomineralisations, coastal soils, silicophytoliths, tussock grasses, xeromorphic anatomy.


References

Agarie S, Agata W, Uchida H, Kubota F, Kaufman P (1996) Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. Journal of Experimental Botany 47, 655–660.
Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis.CrossRef | 1:CAS:528:DyaK28XjsFynu7c%3D&md5=1be57ed63eff1615e5a07d10ce5e553aCAS |

Álvarez MF, Fernández Honaine M, Borrelli N, Osterrieth M (2012) Diversidad vegetal en canteras de áridos del sudeste bonaerense. In ‘Minería en áreas periurbanas. Una aproximación multidimensional’. (Eds L del Rio, S de Marco) pp. 85–100. (Editorial de la Universidad Tecnológica Nacional: Buenos Aires, Argentina)

APHA–AWWA–WPFC (American Public Health Association–American Water Works Association–Water Pollution Control Federation) (1998) ‘Keys to soil taxonomy.’ (APHA: Washington, DC, USA)

Blackman E (1968) The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Annals of Botany 32, 207–218.

Borrelli N, Alvarez MF, Osterrieth M, Marcovecchio J (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical Argiudolls of the Pampean Plain, Argentina: a preliminary study. Journal of Soils and Sediments 10, 983–994.
Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical Argiudolls of the Pampean Plain, Argentina: a preliminary study.CrossRef | 1:CAS:528:DC%2BC3cXhtVSis77K&md5=1569306298e09cd4e69f3cabd8d1d6fdCAS |

Burgos JJ, Vidal AL (1951) Los climas de la República Argentina según la nueva clasificación de Thornwaite. Meteoros 1, 3–32.

Cabrera AL (1976) ‘Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería.’ (Acme SACI: Buenos Aires, Argentina)

Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121, 2052–2060.
Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types.CrossRef |

de Melo SP, Monteiro FA, De Bona FD (2010) Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha. Plant and Soil 336, 241–249.
Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha.CrossRef | 1:CAS:528:DC%2BC3cXhtlWkt7jL&md5=9e113081f78ab6e9eaf220e550a2127aCAS |

Del Rio JL, Bo J, Lopez de Armentia A (2012) La minería de rocas de aplicación en el periurbano de la ciudad de Mar del Plata: la construcción de un nuevo relieve. In ‘Minería en áreas periurbanas. Una aproximación multidimensional’. (Eds L del Rio L, S de Marco) pp. 43-60. (Editorial de la Universidad Tecnológica Nacional: Buenos Aires, Argentina

Dickison WC (2000) ‘Integrative plant anatomy.’ (Academic press: New York)

Domènech R, Vila M (2008) Cortaderia selloana seed germination under different ecological conditions. Acta Oecologica 33, 93–96.
Cortaderia selloana seed germination under different ecological conditions.CrossRef |

Domènech R, Vila M, Pino J, Gesti J (2005) Historical land-use legacy and Cortaderia selloana invasion in the Mediterranean region. Global Change Biology 11, 1054–1064.
Historical land-use legacy and Cortaderia selloana invasion in the Mediterranean region.CrossRef |

Domènech R, Vilà M, Gesti J, Serrasolses I (2006) Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands. Acta Oecologica 29, 171–177.
Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands.CrossRef |

Epstein E (1994) The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91, 11–17.
The anomaly of silicon in plant biology.CrossRef | 1:CAS:528:DyaK2cXntlehtA%3D%3D&md5=bfc02505fb654a1a8212b772ca196fdaCAS |

Exley C (2015) A possible mechanism of biological silicification in plants. Frontiers in Plant Science 6, 853
A possible mechanism of biological silicification in plants.CrossRef |

Fernández Honaine M, Osterrieth M (2012) Silicification of the adaxial epidermis of leaves of a panicoid grass in relation to leaf position and section and environmental conditions. Plant Biology 14, 596–604.
Silicification of the adaxial epidermis of leaves of a panicoid grass in relation to leaf position and section and environmental conditions.CrossRef |

Fernández Honaine M, Zucol A, Osterrieth M (2005) Biomineralizaciones de sílice en Celtis tala Planchon (Celtidaceae). Boletín de la Sociedad Argentina de Botánica 40, 229–239.

Fernández Honaine M, Zucol A, Osterrieth M (2006) Phytolith assemblage and systematic association in grassland species of the SE Pampean Plains, Argentina. Annals of Botany 98, 1155–1165.
Phytolith assemblage and systematic association in grassland species of the SE Pampean Plains, Argentina.CrossRef |

Fernández Honaine M, Bernava Laborde V, Zucol A (2008) Contenido de sílice en gramíneas del pastizal nativo del sudeste bonaerense. In ‘Interdisciplinary nuances in phytoliths and other microfossil studies’. (Eds MA Korstanje, MP Babot) pp. 57–63.(BAR International Series: Oxford)

Fernández Honaine M, Borrelli N, Osterrieth M, del Río L (2013) Amorphous silica biomineralizations in sedges: their relation with senescence and silica availability. Boletín de la Sociedad Argentina de Botánica 48, 247–259.

Fernández Honaine M, Benvenuto ML, Borrelli NL, Osterrieth M (2016) Early silicification of leaves and roots of seedlings of a panicoid grass grown under different conditions: anatomical relation and structural role. Plant Biology
Early silicification of leaves and roots of seedlings of a panicoid grass grown under different conditions: anatomical relation and structural role.CrossRef |

Fernández Montoni MV, Fernández Honaine M, del Río L (2014) An assessment of spontaneous vegetation recovery in aggregate quarries in coastal sand dunes in Buenos Aires province, Argentina. Environmental Management 54, 180–193.
An assessment of spontaneous vegetation recovery in aggregate quarries in coastal sand dunes in Buenos Aires province, Argentina.CrossRef |

Gallego L, Distel RA (2004) Phytolith assemblages in grasses native to Central Argentina. Annals of Botany 94, 865–874.
Phytolith assemblages in grasses native to Central Argentina.CrossRef |

Gallego L, Distel RA, Camina R, Rodriguez Iglesias RM (2004) Soil phytoliths as evidence for species replacement in grazed rangelands of Central Argentina. Ecography 27, 725–732.
Soil phytoliths as evidence for species replacement in grazed rangelands of Central Argentina.CrossRef |

Handreck KA, Jones LHP (1968) Studies of silica in the oat plant IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration. Plant and Soil 29, 449–459.
Studies of silica in the oat plant IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration.CrossRef | 1:CAS:528:DyaF1MXks1Crug%3D%3D&md5=5bd15b3584a89029207f0700117489b2CAS |

Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ (2009) Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant, Cell & Environment 32, 1596–1611.
Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls.CrossRef | 1:CAS:528:DC%2BD1MXhsVKhtbbK&md5=7669bf81afe71fd334726bdc3f0e64f2CAS |

Hodson MJ (2016) The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science 68, 62–69.
The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology.CrossRef | 1:CAS:528:DC%2BC2MXhsFWrsrfP&md5=c141f25d00ac4eb5cc266af0e55aa6a8CAS |

Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. Journal of Experimental Botany 46, 161–171.
Aluminium/silicon interactions in higher plants.CrossRef | 1:CAS:528:DyaK2MXktVOrs7c%3D&md5=231b6ff45caf3748887bdbc3a94963aeCAS |

Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027–1046.
Phylogenetic variation in the silicon composition of plants.CrossRef | 1:CAS:528:DC%2BD2MXhtlSjsL3F&md5=eec9c27afffb5132cd7bdfbc22bec35eCAS |

IUSS Grupo de Trabajo WRB (2007) Base Referencial Mundial del Recurso Suelo. Primera actualización 2007. Informes Sobre Recursos Mundiales de Suelos No. 103. FAO, Roma.

Johansen DA (1940) ‘Plant microtechnique.’ (Mc Graw-Hill: New York)

Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Advances in Agronomy 19, 107–149.
Silica in soils, plants, and animals.CrossRef | 1:CAS:528:DyaF1cXitFWrsA%3D%3D&md5=75be086ca0d00ec7ae1244dbd08152fdCAS |

Katz O (2014) Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Frontiers in Plant Science 5, 376
Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species.CrossRef |

Katz O, Lev-Yadun S, Bar P (2015) Plant silicon and phytolith contents as affected by water availability and herbivory: integrating laboratory experimentation and natural habitat studies. Silicon
Plant silicon and phytolith contents as affected by water availability and herbivory: integrating laboratory experimentation and natural habitat studies.CrossRef |

Klančnik K, Vogel-Mikuš K, Gaberšcik A (2014) Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology. B, Biology 130, 1–10.
Silicified structures affect leaf optical properties in grasses and sedge.CrossRef |

Labouriau LG (1983) Phytolith work in Brazil: a mini review. Phytolitharien Newsletter 2, 6–10.

Lambrinos JG (2002) The variable invasive success of Cortaderia species in a complex landscape. Ecology 83, 518–529.
The variable invasive success of Cortaderia species in a complex landscape.CrossRef |

Lanning FC, Eleuterius LN (1989) Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany 63, 395–410.

Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiologia Plantarum 115, 87–92.
Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance.CrossRef | 1:CAS:528:DC%2BD38XktlGisrY%3D&md5=e3ec7f2408888b1cb014823769e84b5cCAS |

Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50, 11–18.
Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses.CrossRef | 1:CAS:528:DC%2BD2cXhvVGqs7k%3D&md5=73086ce82f2b034aee16d411d9d0ca20CAS |

Ma JF, Takahashi E (2002) ‘Soil, fertilizer, and plant silicon research in Japan.’ (Elsevier: Amsterdam)

Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends in Plant Science 11, 392–397.
Silicon uptake and accumulation in higher plants.CrossRef | 1:CAS:528:DC%2BD28Xns1Kjurg%3D&md5=19e1dff2a47e160ca07b93f6ccdece69CAS |

Martínez G (2001) ‘Geomorfología y Geología del Cenozoico superior de las cuencas de los arroyos Los Cueros y Seco, vertiente nororiental de las Sierras Septentrionales, provincia de Buenos Aires.’ PhD thesis. Universidad Nacional del Sur, Argentina.

Marx R, Lee DE, Lloyd KM, Lee WE (2004) Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chionochloa (Danthonieae) and Festuca (Poeae) in New Zealand. New Zealand Journal of Botany 42, 677–691.
Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chionochloa (Danthonieae) and Festuca (Poeae) in New Zealand.CrossRef |

Massey FP, Hartley SE (2006) Experimental demonstration of the antihervibore effects of silica in grasses: impacts on foliage digestively and vole growth rates. Proceedings. Biological Sciences 273, 2299–2304.
Experimental demonstration of the antihervibore effects of silica in grasses: impacts on foliage digestively and vole growth rates.CrossRef | 1:CAS:528:DC%2BD28XhtVynsr%2FF&md5=44ad9254716fafe5f7218ab57f91a739CAS |

Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152, 677–683.
Herbivore specific induction of silica-based plant defences.CrossRef |

Mercader J, Astudillo F, Barkworth M, Bennett T, Esselmont C, Kinyanjui R, Grossman DL, Simpson S, Walde D (2010) Poaceae phytoliths from the Niassa Rift, Mozambique. Journal of Archaeological Science 37, 1953–1967.
Poaceae phytoliths from the Niassa Rift, Mozambique.CrossRef |

Metcalfe CR (1960) ‘Anatomy of monocotyledons I. Gramineae.’ (Claredon Press: Oxford)

Monserrat AL (2010) Evaluación del estado de conservación de dunas costeras: dos escalas de análisis de la costa pampeana. PhD thesis. Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires). Available at http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4715_Monserrat.pdf [Verified 18 July 2016].

Motomura H, Fujii T, Suzuki M (2000) Distribution of silicified cells in the leaf blades of Pleioblastus chino (Franchet et Savatier) Makino (Bambusoideae). Annals of Botany 85, 751–757.
Distribution of silicified cells in the leaf blades of Pleioblastus chino (Franchet et Savatier) Makino (Bambusoideae).CrossRef |

Motomura H, Mita N, Suzuki M (2002) Silica accumulation in long-lived leaves of Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae). Annals of Botany 90, 149–152.
Silica accumulation in long-lived leaves of Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae).CrossRef | 1:CAS:528:DC%2BD38XlvFOht7o%3D&md5=1f0da0218fe15cdd565297c5ad788cc6CAS |

Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae). Annals of Botany 93, 235–248.
Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae).CrossRef | 1:STN:280:DC%2BD2c%2Fpslahsg%3D%3D&md5=356f354544b9beb3985a6a386f8ccea9CAS |

Osterrieth M (1998) Paleosols and their relation to sea level changes during the late quaternary in Mar Chiquita, Buenos Aires, Argentina. Quaternary International 51–52, 43–44.
Paleosols and their relation to sea level changes during the late quaternary in Mar Chiquita, Buenos Aires, Argentina.CrossRef |

Osterrieth M, Martínez G (1993) Paleosols on late cainozoic sequences in the northeastern side of tandilia range, Buenos Aires, Argentina. Quaternary International 17, 57–65.
Paleosols on late cainozoic sequences in the northeastern side of tandilia range, Buenos Aires, Argentina.CrossRef |

Osterrieth M, Álvarez MF, Fernández Honaine M, Borrelli N (2012) Evolución pedológica en canteras ortocuarcíticas del área periurbana de Mar del Plata. In ‘Minería en áreas periurbanas. Una aproximación multidimensional’. (Eds L del Rio L, S de Marco) pp. 63–81. (Editorial de la Universidad Tecnológica Nacional: Buenos Aires, Argentina)

Osterrieth M, Borrelli N, Alvarez MF, Fernández Honaine M (2014a) Silicophytoliths and silicon biogeochemical cycle in the Pampean Plain, Argentina. In ‘Synthesis of some phytolith studies in South America (Brazil and Argentina)’. (Eds H Gomes Coe, M Osterrieth) pp. 243–262. (Nova Science Publishers Inc.: New York)

Osterrieth M, Fernández Honaine M, Borrelli N, Alvarez MF (2014b) Chapter 10. Silicophytoliths in representative soils of the southeast Pampean Plains, Argentina. In ‘Synthesis of some phytolith studies in South America (Brazil and Argentina)’. (Eds H Gomes Coe, M Osterrieth) pp. 215–241. (Nova Science Publishers Inc.: New York)

Osterrieth M, Borrelli N, Alvarez MF, Fernández Honaine M (2015) Silica biogeochemical cycle in temperate ecosystems of the Pampean Plain, Argentina. Journal of South American Earth Sciences 63, 172–179.
Silica biogeochemical cycle in temperate ecosystems of the Pampean Plain, Argentina.CrossRef | 1:CAS:528:DC%2BC2MXht1KrtLzI&md5=e73784f6fce92b9b1bbb115423eca2f5CAS |

Prychid CJ, Rudall PJ, Gregory M (2003) Systematics and biology of silica bodies in monocotyledons. Botanical Review 69, 377–440.
Systematics and biology of silica bodies in monocotyledons.CrossRef |

Quigley KM, Anderson TM (2014) Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review. Frontiers in Plant Science 5, 568
Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review.CrossRef |

Raven JA (1983) The transport and function of silicon in plants. Biological Reviews of the Cambridge Philosophical Society 58, 179–207.
The transport and function of silicon in plants.CrossRef | 1:CAS:528:DyaL3sXlslakt7s%3D&md5=fbfb4380cf83662dd017b61e342dbf43CAS |

Reynolds J, Lambin X, Massey FP, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE (2012) Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia 170, 445–456.
Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics.CrossRef |

Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In ‘Silicon in agriculture’. (Eds LE Datnoff, GH Snyder, GH Korndörfer) pp. 85–113. (Elsevier: Amsterdam)

Schaller J, Brackhage C, Bäucker E, Dudel EG (2013) UV-screening of grasses by plant silica layer? Journal of Bio-Science 38, 1–4.

Schnack EJ, Fasano JL, Isla FI (1982) The evolution of Mar Chiquita Lagoon, Province of Buenos Aires, Argentina. In ‘Holocene sea-level fluctuations: magnitudes and causes’. (Ed. DJ Colquhom) pp. 143–155. (IGCP61: University of South Carolina, Washington, DC, USA)

Schoelynck J, Bal K, Back H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytologist 186, 385–391.
Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?CrossRef | 1:CAS:528:DC%2BC3cXmt1arsbY%3D&md5=10c0226253e72a8ad45447a7546f52d6CAS |

Schoelynck J, Müller F, Vandevenne F, Bal K, Barão L, Smis A, Opdekamp W, Meire P, Struyf E (2014) Silicon–vegetation interaction in multiple ecosystems: a review. Journal of Vegetation Science 25, 301–313.
Silicon–vegetation interaction in multiple ecosystems: a review.CrossRef |

Servicio Meteorológico Nacional (2010) ‘Estadísticas climatológicas 1991–2000.’ (SMN: Serie B-N 38. Buenos Aires, Argentina)

Soininen EM, Brathen KA, Herranz Jusdado JG, Reidinger S, Hartley SE (2013) More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos 122, 30–41.
More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location.CrossRef |

Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1992) Río de la Plata grasslands. In ‘Natural grasslands: introduction and western hemisphere, ecosystems of the world 8A’. (Ed. RT Coupland) pp. 367–407. (Elsevier: New York)

Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquatic Botany 87, 134–140.
Phragmites australis and silica cycling in tidal wetlands.CrossRef | 1:CAS:528:DC%2BD2sXntF2rtbw%3D&md5=29635e9c7f85838222dd36204464eac5CAS |

Takeoka Y, Matsumura O, Kaufman PB (1983) Studies of silicification of epidermal tissues of grasses as investigated by soft X-ray image analysis. I. On the method to detect and calculate frequency of silica bodies on bulliform cells. Nihon Sakumotsu Gakkai Kiji 52, 544–550.
Studies of silicification of epidermal tissues of grasses as investigated by soft X-ray image analysis. I. On the method to detect and calculate frequency of silica bodies on bulliform cells.CrossRef |

Turner IM (1994) Sclerophylly: primarily protective? Functional Ecology 8, 669–675.
Sclerophylly: primarily protective?CrossRef |

Twiss PC 1992. Predicted world distribution of C3 and C4 grass phytoliths. In ‘Phytolith systematics’. (Eds G Rapp, SC Mulholland) pp. 113–128. (Plenum Press: New York)

Zar JH (1984) ‘Biostatistical analysis.’ (Prentice-Hall: Englewood Cliffs, NJ, USA)

Zucol AF (1999) Fitolitos de las Poaceae argentinas: IV. Asociación fitolítica de Cortaderia selloana (Danthonieae: Arundinoideae), de la provincia de Entre Ríos. Natura Neotropicalis 30, 25–33.



Rent Article (via Deepdyve) Export Citation