Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Genetic analysis reveals a distinct and highly diverse koala (Phascolarctos cinereus) population in South Gippsland, Victoria, Australia

Tristan Lee A D , Kyall R. Zenger B , Robert L. Close C and David N. Phalen A
+ Author Affiliations
- Author Affiliations

A Wildlife Health and Conservation Centre, Faculty of Veterinary Science, The University of Sydney, NSW 2570, Australia.

B School of Marine & Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

C School of Biomedical and Health Sciences, University of Western Sydney, NSW 2560, Australia.

D Corresponding author. Email: tristan.lee@sydney.edu.au

Australian Mammalogy 34(1) 68-74 https://doi.org/10.1071/AM10035
Submitted: 25 October 2010  Accepted: 19 May 11   Published: 7 November 2011

Abstract

Population genetics can reveal otherwise hidden information involving a species’ history in a given region. Koalas were thought to have been virtually exterminated from the Australian state of Victoria during the koala fur trade of the late 1800s. Koalas in the South Gippsland region of Victoria were examined using microsatellite markers to infer population structure and gene flow and to locate a possible remnant gene pool. The results indicate that the South Gippsland koala population had higher genetic diversity (A = 5.97, HO = 0.564) than other published Victorian populations, and was genetically distinct from other koala populations examined. South Gippsland koalas, therefore, may have survived the population reductions of the koala fur trade and now represent a remnant Victorian gene pool that has been largely lost from the remainder of Victoria. This paper illustrates that historic anthropogenic impacts have had little effect on reducing the genetic diversity of a population in the South Gippsland region. However, the South Gippsland population is now subject to threats such as logging and loss of habitat from housing and agriculture expansion. Our results suggest that the South Gippsland koalas require an alternative conservation management program.

Additional keywords: bottleneck, genetic diversity, microsatellite DNA, population structure, translocation.


References

Busch, J. D., Waser, P. M., and DeWoody, J. A. (2007). Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Molecular Ecology 16, 2450–2462.
| 1:CAS:528:DC%2BD2sXot1Whsrg%3D&md5=8441bda843d5683725ab473af486cd02CAS |

Cornuet, J. M., and Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.
| 1:STN:280:DyaK2s7jt1Kgsw%3D%3D&md5=7127dca5de1e5cc3791c51c165621977CAS |

Cristescu, R., Cahill, V., Sherwin, W., Handasyde, K., Carlyon, K., Whisson, D., Herbert, C., Carlsson, B., Wilton, A. N., and Cooper, D. (2009). Inbreeding and testicular abnormalities in a bottlenecked population of koalas, Phascolarctos cinereus. Wildlife Research 36, 299–308.
Inbreeding and testicular abnormalities in a bottlenecked population of koalas, Phascolarctos cinereus.CrossRef |

Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., and Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America 91, 3166–3170.
Mutational processes of simple-sequence repeat loci in human populations.CrossRef | 1:CAS:528:DyaK2cXktVantrk%3D&md5=f95a2046668ff6988cab8beded7ea39dCAS |

DSE (2004). Victoria’s koala management strategy. Victorian Government Department of Sustainability and Environment, Melbourne.

Duka, T., and Masters, P. (2005). Confronting a tough issue: fertility control and translocation for over-abundant koalas on Kangaroo Island, South Australia. Ecological Management & Restoration 6, 172–181.
Confronting a tough issue: fertility control and translocation for over-abundant koalas on Kangaroo Island, South Australia.CrossRef |

Eldridge, M. D. B, Kinnear, J. E., Zenger, K. R., McKenzie, L. M., and Spencer, P. B. S. (2004). Genetic diversity in remnant mainland and "pristine’’ island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conservation Genetics 5, 325–338.
| 1:CAS:528:DC%2BD2cXks1KnsbY%3D&md5=e77b7e70984319579efe01cadc19f7adCAS |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.CrossRef | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=07310b6b31380d35d279364af1d9641cCAS |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=d416a44b47a2efd50f184c2d84946cdfCAS |

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge.)

Gordon, G., and Hrdina, F. (2005). Koala and possum populations in Queensland during the harvest period, 1906–1936. Australian Zoologist 33, 69–99.

Goudet, J. (1995). FSTAT (Version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Guillot, G. (2008). Inference of structure in subdivided populations at low levels of genetic differentiation – the correlated allele frequencies model revisited. Bioinformatics (Oxford, England) 24, 2222–2228.
Inference of structure in subdivided populations at low levels of genetic differentiation – the correlated allele frequencies model revisited.CrossRef | 1:CAS:528:DC%2BD1cXhtFOgs7%2FM&md5=3f77455a5d7cc849f72261ecb57df478CAS |

Guillot, G., Estoup, A., Mortier, F., and Cosson, J. F. (2005a). A spatial statistical model for landscape genetics. Genetics 170, 1261–1280.
A spatial statistical model for landscape genetics.CrossRef | 1:CAS:528:DC%2BD2MXps1KhsLo%3D&md5=0be5f241deeadd236dcce7778c0b9f7cCAS |

Guillot, G., Mortier, F., and Estoup, A. (2005b). GENELAND: a computer package for landscape genetics. Molecular Ecology Notes 5, 712–715.
GENELAND: a computer package for landscape genetics.CrossRef | 1:CAS:528:DC%2BD2MXhtVOhurvN&md5=32155973494fe90dbfb3aa7688355ca8CAS |

Guillot, G., Santos, F., and Estoup, A. (2008). Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics (Oxford, England) 24, 1406–1407.
Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface.CrossRef | 1:CAS:528:DC%2BD1cXmtVais7c%3D&md5=b4582af82e52e2f7afd04ab96f41b352CAS |

Houlden, B. A., England, P., and Sherwin, W. B. (1996a). Paternity exclusion in koalas using hypervariable microsatellites. The Journal of Heredity 87, 149–152.
| 1:CAS:528:DyaK28XjtV2iu7c%3D&md5=30aaf1e4d8232e24d30df7836ad922e8CAS |

Houlden, B. A., England, P. R., Taylor, A. C., Greville, W. D., and Sherwin, W. B. (1996b). Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5, 269–281.
| 1:STN:280:DyaK283jvFKnsA%3D%3D&md5=6889bcc708a3a6c51ee7d6ca197c3383CAS |

Houlden, B. A., Costello, B. H., Sharkey, D., Fowler, E. V., Melzer, A., Ellis, W., Carrick, F., Baverstock, P. R., and Elphinstone, M. S. (1999). Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinereus (Goldfuss 1817). Molecular Ecology 8, 999–1011.
Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinereus (Goldfuss 1817).CrossRef | 1:CAS:528:DyaK1MXltVOns7c%3D&md5=12932e2a262c9f291e624f6b048db4a4CAS |

Keller, L. F., Jeffery, K. J., Arcese, P., Beaumont, M. A., Hochachka, W. M., Smith, J. N. M., and Bruford, M. W. (2001). Immigration and the ephemerality of a natural population bottleneck: Evidence from molecular markers. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 1387–1394.
| 1:STN:280:DC%2BD3Mznt12gtg%3D%3D&md5=733d2276717691c63daeb09536526921CAS |

Kumar, S., Tamura, K., Jakobsen, I., and Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Available from http://www.megasoftware.net

Lee, T., Zenger, K., Close, R., and Phalen, D. (2010). Defining spatial genetic structure and management units for vulnerable koala (Phascolarctos cinereus) populations in the Sydney region. Wildlife Research 37, 156–165.
Defining spatial genetic structure and management units for vulnerable koala (Phascolarctos cinereus) populations in the Sydney region.CrossRef |

Luikart, G. L., Allendorf, F. W., Cornuet, J. M., and Sherwin, W. B. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. The Journal of Heredity 89, 238–247.
Distortion of allele frequency distributions provides a test for recent population bottlenecks.CrossRef | 1:STN:280:DyaK1czitVKhsA%3D%3D&md5=93c75588848704a5d3a7e312d255c168CAS |

Martin, R., and Handasyde, K. (1999). ‘The Koala: Natural History, Conservation and Management.’ (University of New South Wales Press: Sydney.)

Masters, P., Duka, T., Berris, S., and Moss, G. (2004). Koalas on Kangaroo Island: from introduction to pest status in less than a century. Wildlife Research 31, 267–272.
Koalas on Kangaroo Island: from introduction to pest status in less than a century.CrossRef |

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.CrossRef |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=863f5920d01b9865fb10637a1d28de1eCAS |

Reed, D. H., and Frankham, R. (2001). How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 1095–1103.
| 1:STN:280:DC%2BD38%2FisFWitA%3D%3D&md5=a98609a86fec03cf7a0e355540a7b034CAS |

Serventy, V., and Serventy, C. (1989). ‘Koalas.’ (Child and Associates: Sydney.)

Seymour, A. M., Montgomery, M. E., Costello, B. H., Ihle, S., Johnsson, G., St. John, B., Taggart, D., and Houlden, B. A. (2001). High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinereus). Animal Conservation 4, 211–219.
High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinereus).CrossRef |

Smouse, P. E., and Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573.
Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure.CrossRef |

Taylor, A. C., Graves, J. M., Murray, N. D., Obrien, S. J., Yuhki, N., and Sherwin, B. (1997). Conservation genetics of the koala (Phascolarctos cinereus), low mitochondrial DNA variation amongst southern Australian populations. Genetical Research 69, 25–33.
Conservation genetics of the koala (Phascolarctos cinereus), low mitochondrial DNA variation amongst southern Australian populations.CrossRef | 1:CAS:528:DyaK2sXjvVOksLo%3D&md5=65e90885f4cd628304fb2f1db1dcb86aCAS |



Export Citation Cited By (8)