Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Spurs, sexual dimorphism and reproductive maturity in Tasmanian echidnas (Tachyglossus aculeatus setosus)

Stewart C. Nicol A B , Niels A. Andersen A , Gemma E. Morrow A and Rachel L. Harris A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Private Bag 55, University of Tasmania, Sandy Bay, Tas. 7001, Australia.

B Corresponding author. Email: s.c.nicol@utas.edu.au

Australian Mammalogy 41(2) 161-169 https://doi.org/10.1071/AM18005
Submitted: 25 January 2018  Accepted: 05 June 2018   Published: 27 July 2018

Abstract

We present data from an 18-year study of a wild population of Tasmanian echidnas, which show that the presence of spurs in an adult are a reliable indicator of sex, and that there is a slight but significant sexual dimorphism in size, with a male to female mass ratio of 1.1. Minimum age at first breeding in the wild for Tasmanian echidnas was 5 years, as has been found on Kangaroo Island, compared with 3 years in captive echidnas. It is often assumed that although the echidna is distributed throughout Australia, New Guinea and off-shore islands that all aspects of its basic biology are the same in all populations, but comparisons of our results with data from other populations suggest that there may be differences in size and sexual dimorphism.

Additional keywords: crural gland, monotreme, platypus, reproduction.


References

Abensperg-Traun, M. (1991). A study of home-range, movements and shelter use in adult and juvenile echidnas, Tachyglossus aculeatus (Monotremata: Tachyglossidae), in Western Australian wheatbelt reserves. Australian Mammalogy 14, 13–22.

Augee, M., Gooden, B., and Musser, A. M. (2006). ‘Echidna: Extraordinary Egg-laying Mammal.’ (CSIRO Publishing: Melbourne.)

Beard, L. A., and Grigg, G. C. (2000). Reproduction in the short-beaked echidna, Tachyglossus aculeatus: field observations at an elevated site in south-east Queensland. Proceedings of the Linnean Society of New South Wales 122, 89–99.

Beard, L. A., Grigg, G. C., and Augee, M. L. (1992). Reproduction by echidnas in a cold climate. In ‘Platypus and Echidnas’. (Ed. M. L. Augee.) pp. 93–100. (Royal Zoological Society of New South Wales: Sydney.)

Bisana, S., Kumar, S., Rismiller, P., Nicol, S. C., Lefèvre, C., Nicholas, K. R., and Sharp, J. A. (2013). Identification and functional characterization of a novel monotreme-specific antibacterial protein expressed during lactation. PLoS One 8, e53686.
Identification and functional characterization of a novel monotreme-specific antibacterial protein expressed during lactation.Crossref | GoogleScholarGoogle Scholar |

Burrell, H. (1927). ‘The Platypus.’ (Angus & Robertson.)

Clutton-Brock, T. H. (2016). ‘Mammal Societies.’ (John Wiley & Sons, Inc.: Chichester, UK.)

Furlan, E., Griffiths, J., Gust, N., Armistead, R., Mitrovski, P., Handasyde, K. A., Serena, M., Hoffmann, A. A., and Weeks, A. R. (2011). Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables? Australian Journal of Zoology 59, 201–215.
Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?Crossref | GoogleScholarGoogle Scholar |

Grant, T. (1989). Ornithorhynchidae. In ‘Fauna of Australia. Volume 1B. Mammalia’. (Eds D. W. Walton, and B. J. Richardson.) pp. 436–450. (Australian Government Publishing Service: Canberra.)

Grant, T. R. (2015). Family Ornithorhynchidae (Platypus) In ‘Handbook of Mammals of the World. Vol. 5. Monotremes and Marsupials’. (Eds D. E. Wilson, and R. A. Mittermeier.) pp. 58–69. (Lynx Edicions: Barcelona.)

Griffiths, M. (1978). ‘The Biology of Monotremes.’ (Academic Press Inc.: New York.)

Griffiths, M. (1989). Tachyglossidae. In ‘Fauna of Australia. Volume 1B. Mammalia’. (Eds D. W. Walton, and B. J. Richardson.) pp. 407–435. (Australian Government Publishing Service: Canberra.)

Harris, R. L., Davies, N. W., and Nicol, S. C. (2012). Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus). Chemical Senses 37, 819–836.
Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Harris, R. L., Holland, B. R., Cameron, E. Z., Davies, N. W., and Nicol, S. C. (2014). Chemical signals in the echidna: differences between seasons, sexes, individuals and gland types. Journal of Zoology 293, 171–180.
Chemical signals in the echidna: differences between seasons, sexes, individuals and gland types.Crossref | GoogleScholarGoogle Scholar |

Hobbins, P. (2015). A spur to atavism: placing platypus poison. Journal of the History of Biology 48, 499–537.
A spur to atavism: placing platypus poison.Crossref | GoogleScholarGoogle Scholar |

Hurum, J. H., Luo, Z.-X., and Zofia, K.-J. (2006). Were mammals originally venomous? Acta Palaeontologica Polonica 51, 1–11.

Jamison, J. (1818). Letter to the secretary: An envenomation by Ornithorhynchus. Transactions of the Linnean Society of London 12, 584–588.

Knox, R. (1826). Notice respecting the presence of a rudimentary spur in the female echidna of New Holland. Edinburgh New Philosophical Journal 1, 130–132.

Koh, J. M. S., Haynes, L., Belov, K., and Kuchel, P. W. (2010). l-to-d-peptide isomerase in male echidna venom. Australian Journal of Zoology 58, 284–288.
l-to-d-peptide isomerase in male echidna venom.Crossref | GoogleScholarGoogle Scholar |

Kolomyjec, S. H. (2010). The history and relationships of northern platypus (Ornithorhynchus anatinus) populations: a molecular approach. PhD Thesis, James Cook University, Townsville.

Krause, W. J. (2010). Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhyncus anatinus). Cells Tissues Organs 191, 336–354.
Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhyncus anatinus).Crossref | GoogleScholarGoogle Scholar |

Lindenfors, P., Gittleman, J. L., and Jones, K. E. (2007). Sexual size dimorphism in mammals. In ‘Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism’. (Eds D. J. Fairbairn, W. U. Blanckenhorn, and T. Székely.) pp. 16–26. (Oxford University Press: Oxford.)

MacLeod, C. D., and MacLeod, R. C. (2009). The relationship between body mass and relative investment in testes mass in amniotes and other vertebrates. Oikos 118, 903–916.
The relationship between body mass and relative investment in testes mass in amniotes and other vertebrates.Crossref | GoogleScholarGoogle Scholar |

Morrow, G. E., and Nicol, S. C. (2012). Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus). Australian Journal of Zoology 60, 289–298.
Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Morrow, G., Andersen, N. A., and Nicol, S. C. (2009). Reproductive strategies of the short-beaked echidna – a review with new data from a long-term study on the Tasmanian subspecies (Tachyglossus aculeatus setosus). Australian Journal of Zoology 57, 275–282.
Reproductive strategies of the short-beaked echidna – a review with new data from a long-term study on the Tasmanian subspecies (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Morrow, G. E., Jones, S. M., and Nicol, S. C. (2016). Interaction of hibernation and male reproductive function in wild Tasmanian echidnas Tachyglossus aculeatus setosus. Journal of Mammalogy 97, 852–860.
Interaction of hibernation and male reproductive function in wild Tasmanian echidnas Tachyglossus aculeatus setosus.Crossref | GoogleScholarGoogle Scholar |

Morrow, G. E., Jones, S. M., and Nicol, S. C. (2017). Frozen embryos? Torpor during pregnancy in the Tasmanian short-beaked echidna Tachyglossus aculeatus setosus. General and Comparative Endocrinology 244, 139–145.
Frozen embryos? Torpor during pregnancy in the Tasmanian short-beaked echidna Tachyglossus aculeatus setosus.Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C. (2013). Behaviour and ecology of monotremes. In ‘Neurobiology of Monotremes: Brain Evolution in Our Distant Mammalian Cousins’. (Ed. K. W. S. Ashwell.) pp. 17–30. (CSIRO Publishing: Melbourne.)

Nicol, S. C. (2015). Family Tachyglossidae (Echidnas). In ‘Handbook of Mammals of the World. Vol. 5. Monotremes and Marsupials’. (Eds D. E. Wilson, and R. A. Mittermeier.) pp. 34–57. (Lynx Edicions: Barcelona.)

Nicol, S. C. (2017). Energy homeostasis in monotremes. Frontiers in Neuroscience 11, 195.
Energy homeostasis in monotremes.Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C., and Andersen, N. A. (2006). Body temperature as an indicator of egg-laying in the echidna, Tachyglossus aculeatus. Journal of Thermal Biology 31, 483–490.
Body temperature as an indicator of egg-laying in the echidna, Tachyglossus aculeatus.Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C., and Andersen, N. A. (2007). The life history of an egg-laying mammal, the echidna (Tachyglossus aculeatus). Ecoscience 14, 275–285.
The life history of an egg-laying mammal, the echidna (Tachyglossus aculeatus).Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C., and Morrow, G. E. (2012). Sex and seasonality: reproduction in the echidna (Tachyglossus aculeatus). In ‘Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations’. (Eds T. Ruf, C. Bieber, W. Arnold, and E. Millesi.) pp. 143–153. (Springer: Heidelberg.)

Nicol, S. C., Andersen, N. A., and Jones, S. M. (2005). Seasonal variations in reproductive hormones of free-ranging echidnas (Tachyglossus aculeatus): interaction between reproduction and hibernation. General and Comparative Endocrinology 144, 204–210.
Seasonal variations in reproductive hormones of free-ranging echidnas (Tachyglossus aculeatus): interaction between reproduction and hibernation.Crossref | GoogleScholarGoogle Scholar |

Oftedal, O. T., Nicol, S. C., Davies, N. W., Sekii, N., Taufik, E., Fukuda, K., Saito, T., and Urashima, T. (2014). Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology 24, 826–839.
Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Olsson Herrin, R. (2009). Distribution and individual characteristics of the platypus (Ornithorhynchus anatinus) in the Plenty River, southeast Tasmania. M.Sc. Thesis, University of Tasmania, Hobart.

Parker, G. A., Lessells, C. M., and Simmons, L. W. (2013). Sperm competition games: a general model for precopulatory male–male competition. Evolution 67, 95–109.
Sperm competition games: a general model for precopulatory male–male competition.Crossref | GoogleScholarGoogle Scholar |

Preston, B. T., Stevenson, I. R., Pemberton, J. M., Coltman, D. W., and Wilson, K. (2003). Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success. Proceedings. Biological Sciences 270, 633–640.
Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success.Crossref | GoogleScholarGoogle Scholar |

Rismiller, P. D. (1992). Field observations on Kangaroo Island echidnas (Tachyglossus aculeatus multiaculeatus) during the breeding season. In ‘Platypus and Echidnas’. (Ed. M. L. Augee.) pp. 101–105. (Royal Zoological Society of New South Wales: Sydney.)

Rismiller, P. (1993). Overcoming a prickly problem. Australian Natural History 24, 22–29.

Rismiller, P. D., and McKelvey, M. W. (2000). Frequency of breeding and recruitment in the short-beaked echidna, Tachyglossus aculeatus. Journal of Mammalogy 81, 1–17.
Frequency of breeding and recruitment in the short-beaked echidna, Tachyglossus aculeatus.Crossref | GoogleScholarGoogle Scholar |

Rismiller, P. D., and McKelvey, M. W. (2003). Body mass, age and sexual maturity in short-beaked echidnas, Tachyglossus aculeatus. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 136, 851–865.
Body mass, age and sexual maturity in short-beaked echidnas, Tachyglossus aculeatus.Crossref | GoogleScholarGoogle Scholar |

Rismiller, P. D., and McKelvey, M. W. (2009). Activity and behaviour of lactating echidnas (Tachyglossus aculeatus multiaculeatus) from hatching of egg to weaning of young. Australian Journal of Zoology 57, 265–273.
Activity and behaviour of lactating echidnas (Tachyglossus aculeatus multiaculeatus) from hatching of egg to weaning of young.Crossref | GoogleScholarGoogle Scholar |

Rose, R. W., Nevison, C. M., and Dixson, A. F. (1997). Testes weight, body weight and mating systems in marsupials and monotremes. Journal of Zoology 243, 523–531.
Testes weight, body weight and mating systems in marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar |

Schmid, J., Andersen, N. A., Speakman, J. R., and Nicol, S. C. (2003). Field energetics of free-living, lactating and non-lactating echidnas (Tachyglossus aculeatus). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 136, 903–909.
Field energetics of free-living, lactating and non-lactating echidnas (Tachyglossus aculeatus).Crossref | GoogleScholarGoogle Scholar |

Serena, M., and Williams, G. A. (2012). Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark–recapture studies. Australian Journal of Zoology 60, 352–359.
Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark–recapture studies.Crossref | GoogleScholarGoogle Scholar |

Sprent, J. A., and Nicol, S. C. (2012). The influence of habitat on home range size of the short beaked echidna. Australian Journal of Zoology 60, 46–53.
The influence of habitat on home range size of the short beaked echidna.Crossref | GoogleScholarGoogle Scholar |

Sprent, J. A., Andersen, N. A., and Nicol, S. C. (2006). Latrine use by the short-beaked echidna, Tachyglossus aculeatus. Australian Mammalogy 28, 131–133.
Latrine use by the short-beaked echidna, Tachyglossus aculeatus.Crossref | GoogleScholarGoogle Scholar |

Sprent, J., Jones, S. M., and Nicol, S. C. (2012). Does leptin signal adiposity in the egg-laying mammal, Tachyglossus aculeatus? General and Comparative Endocrinology 178, 372–379.
Does leptin signal adiposity in the egg-laying mammal, Tachyglossus aculeatus? Crossref | GoogleScholarGoogle Scholar |

Temple-Smith, P. D. (1973). Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. Ph.D. Thesis, Australian National University, Canberra.

Wallage, A., Clarke, L., Thomas, L., Pyne, M., Beard, L., Ferguson, A., Lisle, A., and Johnston, S. (2015). Advances in the captive breeding and reproductive biology of the short-beaked echidna (Tachyglossus aculeatus). Australian Journal of Zoology 63, 181–191.
Advances in the captive breeding and reproductive biology of the short-beaked echidna (Tachyglossus aculeatus).Crossref | GoogleScholarGoogle Scholar |

Whittington, C., and Belov, K. (2007). Platypus venom: a review. Australian Mammalogy 29, 57–62.
Platypus venom: a review.Crossref | GoogleScholarGoogle Scholar |

Williams, G. A., Serena, M., and Grant, T. R. (2013). Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114.
Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus).Crossref | GoogleScholarGoogle Scholar |

Wong, E. S. W., Nicol, S., Warren, W. C., and Belov, K. (2013). PLoS ONE 8, e79092.
Crossref | GoogleScholarGoogle Scholar |

Yom-Tov, Y., and Nix, H. (1986). Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society. Linnean Society of London 29, 245–262.
Climatological correlates for body size of five species of Australian mammals.Crossref | GoogleScholarGoogle Scholar |