Register      Login
Publications of the Astronomical Society of Australia Publications of the Astronomical Society of Australia Society
Publications of the Astronomical Society of Australia
RESEARCH ARTICLE

Detection Thresholds and Bias Correction in Polarized Intensity

Samuel J. George A B , Jeroen M. Stil A and Ben W. Keller A
+ Author Affiliations
- Author Affiliations

A Institute for Space Imaging Science & Department of Physics and Astronomy, The University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4, Canada

B Corresponding author. Email: samuel@ras.ucalgary.ca

Publications of the Astronomical Society of Australia 29(3) 214-220 https://doi.org/10.1071/AS11027
Submitted: 13 June 2011  Accepted: 26 June 2011   Published: 6 October 2011

Abstract

Detection thresholds in polarized intensity and polarization bias correction are investigated for surveys where the polarization information is obtained from rotation measure (RM) synthesis. Considering unresolved sources with a single RM, a detection threshold of 8 σQU applied to the Faraday spectrum will retrieve the RM with a false detection rate less than 10–4, but polarized intensity is more strongly biased than Ricean statistics suggest. For a detection threshold of 5 σQU, the false detection rate increases to ~4%, depending also on λ2 coverage and the extent of the Faraday spectrum. Non-Gaussian noise in Stokes Q and U due to imperfect imaging and calibration can be represented by a distribution that is the sum of a Gaussian and an exponential. The non-Gaussian wings of the noise distribution increase the false detection rate in polarized intensity by orders of magnitude. Monte Carlo simulations assuming non-Gaussian noise in Q and U give false detection rates at 8 σQU similar to Ricean false detection rates at 4.9 σQU.

Keywords: polarization — methods: statistical — methods: data analysis


References

Beck, R. and Gaensler, B. M., 2004, New Astronomy Reviews, 48, 1289
Crossref | GoogleScholarGoogle Scholar |

Brentjens, M. A. and De Bruyn, A. G., 2005, A&A, 441, 1217
Crossref | GoogleScholarGoogle Scholar |

Burn, B. J., 1966, MNRAS, 133, 67

Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B. and Broderick, J. J., 1998, AJ, 115, 1693

Gaensler, B. M., Landecker, T. L., Taylor, A. R. and POSSUM Collaboration, 2010, BAAS, 41, 515

Grant, J. K., Taylor, A. R., Stil, J. M., Landecker, T. L., Kothes, R., Ransom, R. R. and Scott, D., 2010, ApJ, 714, 1689
Crossref | GoogleScholarGoogle Scholar |

Heald, G., 2009, IAUS, 259, 591

Rice, S. O., 1945, Bell Syst. Tech. J., 24, 46

Simmons, J. F. L. and Stewart, B. G., 1985, A&A, 142, 100

Stil, J. M. and Taylor, A. R., 2007, ApJ, 663, L21
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVejtrc%3D&md5=f3ba8d4ec0953e30d7acb7cb750cd56fCAS |

Subrahmanyan, R., Ekers, R. D., Saripalli, L. and Sadler, E. M., 2010, MNRAS, 402, 2792
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVGhsrw%3D&md5=c1b5c911ea26b5c3a818f87d70c99daeCAS |

Taylor, A. R., Stil, J. M., Grant, J. K., Landecker, T. L., Kothes, R., Reid, R. I., Gray, A. D., Scott, D., Martin, P. G., Boothroyd, A. I., Joncas, G., Lockman, F. J., English, J., Sajina, A. and Bond, J. R., 2007, ApJ, 666, 201
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSit77O&md5=2d286488ae1a0c7f506c6316c0c836caCAS |

Taylor A. R., Salter C. J., 2010, Proceedings of the Conference ‘The Dynamic ISM: A Celebration of the Canadian Galactic Plane Survey’, ASP Conference Series

Vaillancourt, J. E., 2006, PASP, 118, 1340
Crossref | GoogleScholarGoogle Scholar |