Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Differential biochemical responses of Calliandra brevipes (Fabaceae, Mimosoidae) to galling behaviour by Tanaostigmodes ringueleti and T. mecanga (Hymenoptera, Tanaostigmatidae)

Michelle de Lima Detoni A D , Eveline Gomes Vasconcelos A , Elita Scio A , Jair Adriano Kopke de Aguiar A , Rosy Mary dos Santos Isaias B and Geraldo Luiz Gonçalves Soares A C
+ Author Affiliations
- Author Affiliations

A Departamento de Bioquímica/Pós-Graduação em Ciências Biológicas (Genética e Biotecnologia), ICB, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Cidade Universitária, Juiz de Fora, MG 36036-330, Brazil.

B Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

C Departamento de Botânica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

D Corresponding author. Email: michelledetoni@yahoo.com.br

Australian Journal of Botany 58(4) 280-285 https://doi.org/10.1071/BT09213
Submitted: 14 November 2009  Accepted: 19 March 2010   Published: 22 June 2010

Abstract

Two species of Tanaostigmodes, T. ringueleti and T. mecanga, induce two distinct gall morphotypes in Calliandra brevipes Benth. (Fabaceae: Mimosoidae), namely a globose and a fusiform one. Secondary and primary metabolism of the two galls was compared with that of the stem tissue of the host plant. Phytochemical screening of gall samples revealed that triterpenoids were exclusive of the globose gall, and sterols exclusive of the fusiform gall, whereas saponins were absent in both galls. Flavonoid content in the globose gall was significantly lower than that in the fusiform gall. As expected, high antioxidant activity was observed in the fusiform gall, which was associated with the high flavonoid content. Protein analyses showed the presence of specific polypeptides in globose (97, 75, 34 kDa) and fusiform (40, 33 kDa) galls. Sucrose, glucose and fructose contents were 1.4–3.3 times higher in the globose-gall than in non-galled tissue, whereas in the fusiform gall, fructose content was 2-fold increased. The interactions between the host and the two Tanaostigmodes showed both similarities and differences between them, and with the non-galled tissue. Taken together, the results suggested that the two gall inducers co-inhabiting C. brevipes are capable of manipulating the primary and secondary metabolism differentially for their own benefit and, thus, the nutritive hypothesis was reinforced.


Acknowledgements

This project was supported in part by grants from the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Profissional de Ensino Superior (CAPES). Detoni ML was recipient of IC and Masters Degree fellowships from the BIC, PIBIC, BCCG/UFJF and CAPES. We thank Dr M. A. Furtado and J. M. Andrade from the Faculdade de Farmácia da Universidade Federal de Juiz de Fora for technical assistance.


References


Allison SD, Schultz JC (2005) Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology 31, 151–166.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense mechanisms. New Phytologist 127, 617–633.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Carvalho FM, Soares GLG, Isaias RMS (2005) Hymenoptera galls from Calliandra brevipes. Revista Brasileira de Zoociências 7, 362. open url image1

Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? American Midland Naturalist 110, 225–234.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life forms, host plant age and plant density. Journal of Ecology 92, 707–716.
Crossref | GoogleScholarGoogle Scholar | open url image1

Duh PD, Yen GC (1997) Antioxidant activity of three water extracts. Food Chemistry 60, 639–645.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Edwards JD , Wratten SD (1980) ‘Ecology of insect–plant interactions.’ (The Camelot Press: Southampton, UK)

Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness. Tests of hypotheses. Oecologia 76, 161–167.
Crossref | GoogleScholarGoogle Scholar | open url image1

Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. The British Journal of Nutrition 88, 587–605.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Govindarajan R, Rastogi S, Vijayakumar M, Shirwaikar A, Rawat AKS, Mehrotra S, Pushpangadan P (2003) Studies on the antioxidant activities of Desmodium gangeticum. Biological & Pharmaceutical Bulletin 26, 1424–1427.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Harborne JB (1998) ‘Phytochemical methods. A guide to modern techniques of plant analysis.’ (Chapman and Hall: London)

Harper LJ, Schönrogge K, Lim KY, Francis P, Lichtenstein CP (2004) Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant, Cell & Environment 27, 327–335.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113, 492–501.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hartley SE, Lawton JH (1992) Host plant manipulation by gall insects: a test of the nutrition hypothesis. Journal of Animal Ecology 61, 113–119.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 509–540.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophages T4. Nature 227, 680–685.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115, 161–166.
Crossref | GoogleScholarGoogle Scholar | open url image1

Miliauskas G, Venskutonis PR, Van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85, 231–237.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Moura MZD, Soares GLG, Isaias RMS (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Australian Journal of Botany 56, 153–160.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences, USA 97, 13 184–13 187.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pascual-Alvarado E, Cuevas-Reyes P, Quesada M, Oyama K (2008) Interactions between galling insects and leaf-feeding insects: the role of plant phenolic compounds and their possible interference with herbivores. Journal of Tropical Ecology 24, 329–336.
Crossref | GoogleScholarGoogle Scholar | open url image1

Penteado-Dias AM, Carvalho FM (2008) News species of Hymenoptera associated with galls on Calliandra brevipes Benth. (Fabaceae: Mimosoidea) in Brazil. Revista Brasileira de Entomologia 52, 305–310.
Crossref | GoogleScholarGoogle Scholar | open url image1

Perioto NW, Lara RIR (2005) Duas novas espécies de Tanaostigmodes Ashmead, 1896 (Hymenoptera, Tanaostigmatidae) obtidas de galhas de Calliandra dsysantha Benth. (Leguminosae, Mimosoidea) do Brasil central. Biota Neotropica 5, 115–126.
Crossref | GoogleScholarGoogle Scholar | open url image1

Price PW, Waring GL, Fernandes GW (1986) Hypotheses on the adaptive nature of galls. Proceedings of the Entomological Society of Washington 88, 361–363. open url image1

Price PW, Fernandes GW, Warring GL (1987) Adaptive nature of insect galls. Environmental Entomology 16, 15–24. open url image1

Rehill BJ, Schultz JC (2003) Enhanced invertase activities in the galls of Hormaphis hamamelidis. Journal of Chemical Ecology 29, 2703–2720.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schönrogge K, Harper LJ, Lichtenstein CP (2000) The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant, Cell & Environment 23, 215–222.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soares GLG, Isaias RMS, Gonçalves SJMR, Christiano JCS (2000) Alterações químicas induzidas por coccídeos galhadores (Coccoidea, Brachyscelidae) em folhas de Rollinia laurifolia Schdtl. (Annonaceae). Revista Brasileira de Zoociências 2, 103–116. open url image1

Sturm A (1999) Carbohydrate-modulated gene expression in plants. Plant Physiology 121, 1–8.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Trevelyan WE, Procter DP, Harrison JS (1950) Detection of sugars on paper chromatograms. Nature 166, 444–445.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wagner H , Bladt S (2001) ‘Plant drug analysis. A thin layer chromatography atlas. 2nd edn.’ (Springer: Berlin)

Weis AE, Walton R, Crego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annual Review of Entomology 33, 467–486.
Crossref | GoogleScholarGoogle Scholar | open url image1