Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Predominant regeneration strategy results in species-specific genetic patterns in sympatric Nothofagus s.s. congeners (Nothofagaceae)

M. Cristina Acosta A , Paula Mathiasen B and Andrea C. Premoli B C
+ Author Affiliations
- Author Affiliations

A Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina.

B Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET – Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Argentina.

C Corresponding author. Email: andrea.premoli@gmail.com

Australian Journal of Botany 60(4) 319-327 https://doi.org/10.1071/BT11277
Submitted: 3 November 2011  Accepted: 4 March 2012   Published: 4 May 2012

Abstract

Life-history traits affect plant performance. Predominant regeneration modes, sprouting v. non-sprouting, will result in contrasting evolutionary and ecological responses that may be traced by nuclear markers. Sympatric Nothofagus Blume species provide the natural setting to test whether sprouters have a greater ability to maintain genetic diversity. In total, 28 populations along the entire distribution range of N. antarctica (G. Forst.) Oerst. were screened by eight polymorphic isozyme loci. We compared pairwise genetic patterns of the predominant sprouter N. antarctica with the mainly non-sprouter N. pumilio (Poepp. & Endl.) Krasser at 20 sympatric locations along their geographically concordant widespread range. Overall, the sprouter N. antarctica showed higher genetic variation throughout its range than did the non-sprouter N. pumilio. Mid-latitude populations of N. antarctica have maintained isozyme diversity, as inferred using genetic-landscape analysis. Despite the potential for inter-specific gene flow and past hybridisations, species identity was preserved by divergent selective forces acting on sympatric populations with distinct autoecological traits. Predominantly sprouting, as compared with mainly non-sprouting, has favoured long-term persistence of genet diversity in relatively large populations that were probably less affected by drift through time, thereby preserving molecular variants along its range. These variants, in combination with plasticity in diverse habitats, have resulted in greater resilience of N. antarctica under changing scenarios.

Additional keywords: isozyme markers, non-sprouter, Patagonia, regeneration mode, sprouter.


References

Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and Evolution 54, 235–242.
Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae).CrossRef | open url image1

Aguinagalde I, Hampe A, Mohanty A, Martín JP, Duminil J, Petit RJ (2005) Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. Journal of Biogeography 32, 329–339.
Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs.CrossRef | open url image1

Alberdi M (1987) Ecofisiología de especies chilenas del género Nothofagus. Bosque 8, 77–84.

Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology & Evolution 16, 45–51.
Ecology of sprouting in woody plants: the persistence niche.CrossRef | open url image1

Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the european beech. Genetics 157, 389–397.

De Witte L, Armbruster GFJ, Gielly L, Taberlet P, Stöcklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Molecular Ecology 21, 1081–1097.
AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species.CrossRef | open url image1

Godt MJW, Hamrick JL (1999) Population genetic analysis of Elliottia racemosa (Ericaceae), a rare Georgia shrub. Molecular Ecology 8, 75–82.
Population genetic analysis of Elliottia racemosa (Ericaceae), a rare Georgia shrub.CrossRef | open url image1

Goudet J (2001) ‘FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3.’ Available at http://www2.unil.ch/popgen/softwares/fstat.htm [Verified 23 August 2005]

Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95–124.
Factors influencing levels of genetic diversity in woody plant species.CrossRef | open url image1

Infostat Group (2002) ‘INFOSTAT, version 1.1. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.’ (Editorial Brujas: Córdoba, Argentina)

Lamont BB, Wiens D (2003) Are seed set and speciation rates always low among species that resprout after fire, and why? Evolutionary Ecology 17, 277–292.
Are seed set and speciation rates always low among species that resprout after fire, and why?CrossRef | open url image1

Martínez-Pastur G, Pinedo L, Fernandez C (1997) Seed germination and clonal spread system in forests of Tierra del Fuego. In ‘Proceedings II. Argentinean and Latinoamerican forest congress. Chapter on native forests and environmental protection’. pp. 141–147. (Posadas: Argentina)

Mathiasen P (2010) Genetic variation and structure in Nothofagus pumilio (Poepp. et Endle.) Krasser ‘lenga’ throughout different environmental gradients. Doctoral Thesis, Biological Sciences, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Rio Negro, Argentina.

Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Molecular Ecology 19, 371–385.
Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America.CrossRef | 1:CAS:528:DC%2BC3cXktlOntLY%3D&md5=12f9b1eaaca74474ad8925920e47bb8cCAS | open url image1

Miller MP (2005) Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information. The Journal of Heredity 96, 722–724.
Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information.CrossRef | 1:CAS:528:DC%2BD2MXht1Wis77M&md5=e9b673e75d0fb7a316725767850465c8CAS | open url image1

Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms detected in mature needle of ponderosa pine. The Journal of Heredity 70, 86–89.

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70, 3321–3323.
Analysis of gene diversity in subdivided populations.CrossRef | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=6c9a6b81d701d41b74bc5b175767ff90CAS | open url image1

Pastorino MJ, Marchelli P, Milleron M, Soliani C, Gallo LA (2009) The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica 136, 79–88.
The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica.CrossRef | 1:CAS:528:DC%2BD1MXjvFejur0%3D&md5=6a53c9ed209714d8b2d09eacc02bb65bCAS | open url image1

Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844–855.
Identifying populations for conservation on the basis of genetic markers.CrossRef | open url image1

Premoli AC (1991) Morfología y capacidad germinativa en poblaciones de Nothofagus antarctica (Forster) Oerst. del noroeste andino patagónico. Bosque 12, 53–59.

Premoli AC (1997) Genetic variation in a geographically restricted and two widespread species of South American Nothofagus. Journal of Biogeography 24, 883–892.
Genetic variation in a geographically restricted and two widespread species of South American Nothofagus.CrossRef | open url image1

Premoli AC (1998) The use of genetic markers to conserve endangered species and to design protected areas of more widespread species. In ‘Recent advances in biotechnology for tree conservation and management. Proceedings of the international workshop’. (Ed. International Foundation for Science) pp. 157–171. (Universidade Federal de Santa Catarina: Florianópolis, Santa Catarina, Brazil)

Premoli AC (2004) Variación en Nothofagus pumilio (Poepp. et Endl.) Krassser. In ‘Variación intraespecífica en las especies arbóreas de los Bosques Templados de Chile y Argentina’. (Eds C Donoso, AC Premoli, L Gallo, R Ipinza) pp. 145–166. (Editorial Universitaria: Santiago de Chile).

Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Molecular Ecology 14, 2319–2329.
Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests.CrossRef | 1:CAS:528:DC%2BD2MXmvF2qsLo%3D&md5=55d4ca1c46728c56b3f92523aac412bbCAS | open url image1

Premoli AC, Steinke L (2008) Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems. Molecular Ecology 17, 3827–3835.
Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems.CrossRef | open url image1

Premoli AC, Mathiasen P, Kitzberger T (2010) Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeography, Palaeoclimatology, Palaeoecology 298, 247–256.
Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia.CrossRef | open url image1

Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? New Phytologist 193, 261–275.
Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be?CrossRef | 1:CAS:528:DC%2BC38XitVKgt7k%3D&md5=b4ef5479e1ab680515cc0282a8957f44CAS | open url image1

Quiroga P, Vidal Russel R, Premoli AC (2005) Evidencia morfológica e isoenzimática de hibridación natural entre Nothofagus antarctica y N. pumilio en el noroeste Patagónico. Bosque 26, 25–32.

Ranker TA, Haufler CH, Soltis PS, Soltis DE (1989) Genetic evidence for allopolyploidy in the neotropical fern Hemionitis (Adiantaceae) and the reconstruction of an ancestral genome. Systematic Botany 14, 439–447.
Genetic evidence for allopolyploidy in the neotropical fern Hemionitis (Adiantaceae) and the reconstruction of an ancestral genome.CrossRef | open url image1

Rice K, Jain S (1985) Plant population genetics and evolution in disturbed environments. In ‘The ecology of natural disturbance and patch dynamics’. (Eds STA Pickett, PS White) pp. 287–303. (Academic Press: New York)

Segarra-Moragues JG, Ojeda F (2010) Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot. Evolution 64, 3511–3524.
Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot.CrossRef | open url image1

Soler Esteban R, Martínez Pastur G, Lencinas MV, Peri PL (2010) Flowering and seeding patterns in primary, secondary and silvopastoral managed Nothofagus antarctica forests in South Patagonia. New Zealand Journal of Botany 48, 63–73.
Flowering and seeding patterns in primary, secondary and silvopastoral managed Nothofagus antarctica forests in South Patagonia.CrossRef | open url image1

Soliani C, Gallo L, Marchelli P (2011) Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genetics & Genomes
Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities.CrossRef | open url image1

Steinke L, Premoli AC, Souto CP, Hedrén M (2008) Adaptive and neutral variation of the resprouter Nothofagus antarctica growing in distinct habitats in north-western Patagonia. Silva Fennica 42, 177–188.

Takahashi MK, Horner LM, Kubota T, Keller NA, Abrahamson WG (2011) Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant. Molecular Ecology 20, 3730–3742.
Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant.CrossRef | open url image1

Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In ‘The ecology and biogeography of Nothofagus forests’. (Eds TT Veblen, RS Hill, J Read) pp. 293–353. (Yale University Press: New Haven, CT)

Vidal Russell R (2000) Evidencias de resistencia en Nothofagus a Misodendrum: patrones de infección y consecuencias sobre la estructura genética de la planta parásita. Tesis de Licenciatura, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.CrossRef | open url image1

Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420.
The interpretation of population structure by F-statistics with special regard to systems of mating.CrossRef | open url image1

Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) ‘POPGENE, the user-friendly shareware for population genetic analysis, version 1.32.’ (Molecular Biology and Biotechnology Center, University of Alberta: Edmonton). Available at http://www.ualberta.ca/~fyeh/popgene_download.html [Verified December 2000]



Rent Article (via Deepdyve) Export Citation Cited By (5)