Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and the historical development of Australo-Papuan bird communities

Árpád S. Nyári A C and Leo Joseph B

A The University of Kansas, Biodiversity Institute, 1345 Jayhawk Boulevard, Dyche Hall, Lawrence, KS 66045, USA.

B Australian National Wildlife Collection, CSIRO Ecosystem Sciences, GPO Box 284, Canberra, ACT 2601, Australia.

C Corresponding author. Email: arpinyari@gmail.com

Emu 111(3) 202-211 http://dx.doi.org/10.1071/MU10047
Submitted: 17 June 2010  Accepted: 3 December 2010   Published: 17 August 2011

Abstract

Evaluations of relationships among honeyeaters (Passeriformes : Meliphagidae) have used dense taxon and nucleotide sampling. Here we focus on the systematically contentious meliphagid genus Lichenostomus. We use data from two molecular markers that were common to two major recent studies, the mitochondrial protein-coding gene ND2 and the nuclear intron Fib5. Based on complete species-level sampling of Lichenostomus, we confirm the recent finding that Lichenostomus is not monophyletic. We recover seven distinct lineages dispersed within the meliphagid assemblage. Two uniform and unadorned species, the White-gaped (L. unicolor) and Yellow (L. flavus) Honeyeaters, were sister species close to some other taxa currently placed in Lichenostomus. The only two mangrove specialists, the Varied (L. versicolor) and Mangrove (L. fasciogularis) Honeyeaters from north-eastern and central-eastern Australia respectively, were not sister-species, but the former was sister to the pair comprising Mangrove Honeyeater and the widespread Singing Honeyeater (L. virescens). Two endemic New Guinean species, the Obscure (L. obscurus) and Black-throated (L. subfrenatus) Honeyeaters, are a sister pair to the Yellow-faced Honeyeater (L. chrysops) of eastern Australia. We suggest a revised generic nomenclature for the species recently placed in Lichenostomus and erect one new genus-group name, Bolemoreus, to include two species that have been previously grouped in Caligavis.


References

Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBrie, J., Nelson, G., and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
Biogeography of the Australian monsoon tropics.CrossRef | open url image1

Christidis, L., and Boles, W. E. (2008). ‘Systematics and Taxonomy of Australian Birds.’ (CSIRO Publishing: Melbourne.)

Christidis, L., and Schodde, R. (1993). Relationships and radiations in the meliphagine honeyeaters: Meliphaga, Lichenostomus and Xanthotis (Aveś : Meliphagidae): protein evidence and its integration with morphology and ecogeography. Australian Journal of Zoology 41, 293–316.
Relationships and radiations in the meliphagine honeyeaters: Meliphaga, Lichenostomus and Xanthotis (Aveś : Meliphagidae): protein evidence and its integration with morphology and ecogeography.CrossRef | open url image1

Diamond, J. (1977). Continental and insular speciation in Pacific island birds. Systematic Zoology 26, 263–268.
Continental and insular speciation in Pacific island birds.CrossRef | open url image1

Driskell, A. C., and Christidis, L. (2004). Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae). Molecular Phylogenetics and Evolution 31, 943–960.
Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae).CrossRef | 1:CAS:528:DC%2BD2cXjs1alsLw%3D&md5=dda5c4632503b999f88b3907ddbc537aCAS | open url image1

Filardi, C. E., and Moyle, R. G. (2005). Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438, 216–219.
Single origin of a pan-Pacific bird group and upstream colonization of Australasia.CrossRef | 1:CAS:528:DC%2BD2MXhtF2nsrjP&md5=9cba3538341c3e8f3999f17017914bd5CAS | open url image1

Ford, J. (1982). Origin, evolution and speciation of birds specialized to mangroves in Australia. Emu 82, 12–23.
Origin, evolution and speciation of birds specialized to mangroves in Australia.CrossRef | open url image1

Gardner, J. L., Trueman, J. W. H., Ebert, D., Joseph, L., and Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australian songbirds. Molecular Phylogenetics and Evolution 55, 1087–1102.
Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australian songbirds.CrossRef | open url image1

Higgins, P. J., Peter, J. M., and Steele, W. K. (Eds) (2001). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 5: Tyrant-flycatchers to Chats.’ (Oxford University Press: Melbourne.)

Higgins, P. J., Christidis, L., and Ford, H. A. (2008). Family Meliphagidae (Honeyeaters). In ‘Handbook of the Birds of the World. Vol. 13: Penduline-tits to Shrikes’. (Eds J. del Hoyo, A. Elliot and D. A. Christie.) pp. 498–691. (Lynx Edicions: Barcelona.)

Iredale, T. (1956). ‘Birds of New Guinea. Vol. 2.’ (Georgian House: Melbourne.)

Keast, J. A. (1961). Bird speciation on the Australian continent. Bulletin of the Museum of Comparative Zoology 123, 303–495. open url image1

Keast, J. A. (1981). The evolutionary biogeography of Australian birds. In ‘Ecological Biogeography of Australia’. (Ed. J. A. Keast.) pp. 1587–1635. (W. Junk: The Hague.)

Keast, J. A. (1985). An introductory ecological biogeography of the Australo-Pacific Meliphagidae. New Zealand Journal of Zoology 12, 605–622. open url image1

Longmore, N. W., and Boles, W. E. (1983). Description and systematics of the Eungella Honeyeater Meliphaga hindwoodi, a new species of honeyeater from central eastern Queensland, Australia. Emu 83, 59–65.
Description and systematics of the Eungella Honeyeater Meliphaga hindwoodi, a new species of honeyeater from central eastern Queensland, Australia.CrossRef | open url image1

Maddison, W. P., and Maddison, D. R. (2009). Mesquite: a modular system for evolutionary analysis. Version 2.71. Available at http://mesquiteproject.org [Verified 15 June 2011].

Marini, M., and Hackett, S. J. (2002). A multifaceted approach to the characterization of an intergeneric hybrid manakin (Pipridae) from Brazil. Auk 119, 1114–1120.
A multifaceted approach to the characterization of an intergeneric hybrid manakin (Pipridae) from Brazil.CrossRef | open url image1

Mayr, E. (1941). The origin and the history of the bird fauna of Polynesia. Proceedings of the VI Pacific Scientific Congress 4, 197–216. open url image1

Mayr, E., and Diamond, J. (2001). ‘The Birds of Northern Melanesia: Speciation, Ecology and Biogeography.’ (Oxford University Press: Oxford, UK.)

McGill, A. R. (1976). Review of ‘Interim List of Australian songbirds – Passerines’. Australian Bird Bander 14, 80–82. open url image1

Moyle, R. G., Filardi, C. E., Smith, C. E., and Diamond, J. (2009). Explosive Pleistocene speciation and hemispheric radiation of a ‘great speciator’. Proceedings of the National Academy of Sciences of the United States of America 106, 1863–1868.
Explosive Pleistocene speciation and hemispheric radiation of a ‘great speciator’.CrossRef | 1:CAS:528:DC%2BD1MXitV2isrc%3D&md5=ad83f303543470aa13a8ce91a7ab1b9cCAS | open url image1

Norman, J. A., Rheindt, F. E., Rowe, D. L., and Christidis, L. (2007). Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Molecular Phylogenetics and Evolution 42, 80–91.
Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters.CrossRef | 1:CAS:528:DC%2BD28Xht1CgsbvK&md5=02d32302726658ed1b8090958f00f22cCAS | open url image1

Nyári, Á. S., Benz, B. W., Jønsson, K. A., Fjeldså, J., and Moyle, R. G. (2009). Phylogenetic relationships of fantails (Aveś : Rhipiuridae). Zoologica Scripta 38, 553–561.
Phylogenetic relationships of fantails (Aveś : Rhipiuridae).CrossRef | open url image1

Pollock, D. D., Zwickl, D. J., McGuire, J. A., and Hillis, D. M. (2002). Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology 51, 664–671.
Increased taxon sampling is advantageous for phylogenetic inference.CrossRef | open url image1

Posada, D., and Crandall, K. A. (1998). ModelTest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
ModelTest: testing the model of DNA substitution.CrossRef | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=555f3e45406b4981d854dfcade9a2b6aCAS | open url image1

Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available at http://beast.bio.ed.ac.uk/Tracer [Verified 15 June 2011].

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.CrossRef | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=823690e1f89d39c3c4ab30009f6b2f5fCAS | open url image1

Salomonsen, F. (1967). Family Meliphagidae. In ‘Check-list of Birds of the World. Vol. 12’. (Ed. J. A. Paynter Jr.) pp. 338–450. (Museum of Comparative Zoology: Cambridge, MA.)

Schodde, R. (1975). ‘Interim List of Australian Songbirds. Passerines.’ (Royal Australasian Ornithologists Union: Melbourne.)

Schodde, R. (2006). Australia’s bird fauna today – origins and evolutionary development. In ‘Evolution and Biogeography of Australasian Vertebrates’. (Eds J. R. Merrick, M. Archer, G. M. Hickey and M. S. Y. Lee.) pp. 413–458. (Auscipub: Oatlands, NSW.)

Schodde, R., and Calaby, J. H. (1972). The biogeography of the Australo-Papuan bird and mammal faunas in relation to Torres Strait. In ‘Bridge and Barrier: The Natural and Cultural History of Torres Strait’. (Ed. D. Walker.) pp. 257–300. (Research School of Pacific Studies, Australian National University: Canberra.)

Schodde, R., and Mason, I. J. (1999). ‘The Directory of Australian Birds: Passerines.’ (CSIRO Publishing: Melbourne.)

Schodde, R., Mason, I. J., and Gill, H. B. (1979). The avifauna of the Australian mangroves: a brief review of composition, structure and origin. In ‘Mangrove Ecosystems in Australia’. (Ed. B. F. Clough.) pp. 141–150. (Australian National University Press: Canberra.)

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.
CONSEL: for assessing the confidence of phylogenetic tree selection.CrossRef | 1:STN:280:DC%2BD38%2FgtFOlsw%3D%3D&md5=8829b3890ec48eb7c5c1d1848e1d12d1CAS | open url image1

Sorenson, M. D., and Quinn, T. W. (1998). Numts: a challenge for avian systematics and population biology. Auk 115, 214–221. open url image1

Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., and Mindell, D. P. (1999). Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution 12, 105–114.
Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates.CrossRef | 1:CAS:528:DyaK1MXjvFWrsLk%3D&md5=3b51f3428d6ed1fa039c305b465d5108CAS | open url image1

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.CrossRef | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=6a5a1e7e00ac8aa7727fc56aa082bb89CAS | open url image1

Toon, A., Hughes, J., and Joseph, L. (2010). Multilocus analysis of honeyeaters (Aveś : Meliphagidae) highlights spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone. Molecular Ecology 19, 2980–2994.
Multilocus analysis of honeyeaters (Aveś : Meliphagidae) highlights spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone.CrossRef | 1:CAS:528:DC%2BC3cXhtVyktb3F&md5=875c1059094091f1b20808778a325915CAS | open url image1

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas, Austin.

Zwickl, D. J., and Hillis, D. M. (2002). Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51, 588–598.
Increased taxon sampling greatly reduces phylogenetic error.CrossRef | open url image1



Export Citation