CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 57(2)

Effect of boiling water, seed coat structure and provenance on the germination of Acacia melanoxylon seeds

Geoffrey E. Burrows A D, James M. Virgona B, Roger D. Heady C

A Institute for Land, Water and Society, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
B EH Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
C Fenner School of Environment and Society, The Australian National University, Canberra, ACT 0200, Australia.
D Corresponding author. Email: gburrows@csu.edu.au
 
PDF (4.7 MB) $25
 Export Citation
 Print
  


Abstract

Acacia melanoxylon (Mimosoideae or Mimosaceae) is a high quality timber tree with an extensive natural distribution in Australia and a wide genetic and phenotypic diversity. Seeds from three widely differing provenances in Tasmania were tested to determine whether they had different responses to various dormancy-breaking treatments. All provenances had limited germination (<11%) if seeds were untreated and between 85% and 91% germination after 40 days if the seeds were nicked. For all provenances short (≤60 s) exposure to boiling water gave high germination percentages. These values were generally lower, although usually not significantly so, than the germination percentages following nicking. Germination percentages decreased with increasing time of exposure to boiling water, although one provenance had a significantly greater tolerance to one of the longer (20 min) treatments. Nicked seeds germinated quickly and uniformly, whereas those subjected to the boiling-water treatments germinated after a longer period and more gradually. In untreated seeds, the lens was a low, elliptically shaped dome (~110–135 µm wide, 140–190 µm long). In more than 99% of the seeds examined, the structure of the lens was markedly altered after a 10-s exposure to boiling water. A wide diversity of altered lens structure was found, from a circular hole between the macrosclereids, to a short fissure where the macrosclereids did not separate to their bases. Nicked seeds had a 200–375 times greater area for water uptake than a fully disrupted lens and this was probably the principal reason why the nicked seeds germinated sooner and more rapidly.

   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014